The Conformation of a Signal Peptide Bound by Escherichia coli Preprotein Translocase SecA (original) (raw)
Abstract
To understand the structural nature of signal sequence recognition by the preprotein translocase SecA, we have characterized the interactions of a signal peptide corresponding to a LamB signal sequence (modified to enhance aqueous solubility) with SecA by NMR methods. One-dimensional NMR studies showed that the signal peptide binds SecA with a moderately fast exchange rate (K d ϳ 10 ؊5 M). The line-broadening effects observed from one-dimensional and two-dimensional NMR spectra indicated that the binding mode does not equally immobilize all segments of this peptide. The positively charged arginine residues of the n-region and the hydrophobic residues of the h-region had less mobility than the polar residues of the c-region in the SecA-bound state, suggesting that this peptide has both electrostatic and hydrophobic interactions with the binding pocket of SecA. Transferred nuclear Overhauser experiments revealed that the h-region and part of the c-region of the signal peptide form an ␣-helical conformation upon binding to SecA. One side of the hydrophobic core of the helical h-region appeared to be more strongly bound in the binding pocket, whereas the extreme C terminus of the peptide was not intimately involved. These results argue that the positive charges at the n-region and the hydrophobic helical h-region are the selective features for recognition of signal sequences by SecA and that the signal peptide-binding site on SecA is not fully buried within its structure.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (59)
- Gierasch, L. M. (1989) Biochemistry 28, 923-930
- von Heijne, G. (1985) J. Mol. Biol. 184, 99 -105
- Gennity, J., Goldstein, J., and Inouye, M. (1990) J. Bioenerg. Biomembr. 22, 233-269
- Izard, J. W., and Kendall, D. A. (1994) Mol. Microbiol. 13, 765-773
- Izard, J. W., Rusch, S. L., and Kendall, D. A. (1996) J. Biol. Chem. 271, 21579 -21582
- Fekkes, P., and Driessen, A. J. (1999) Microbiol. Mol. Biol. Rev. 63, 161-173
- Lill, R., Dowhan, W., and Wickner, W. (1990) Cell 60, 271-280
- Vrontou, E., and Economou, A. (2004) Biochim. Biophys. Acta 1694, 67-80
- Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P., and Wickner, W. (1990) Cell 63, 269 -279
- Economou, A., and Wickner, W. (1994) Cell 78, 835-843
- Schiebel, E., Driessen, A. J., Hartl, F. U., and Wickner, W. (1991) Cell 64, 927-939
- van der Wolk, J. P., de Wit, J. G., and Driessen, A. J. (1997) EMBO J. 16, 7297-7304
- Dalbey, R., and Chen, M. (2004) Biochim. Biophys. Acta 1694, 37-53
- Derman, A. I., Puziss, J. W., Bassford, P. J., and Beckwith, J. (1993) EMBO J. 12, 879 -888
- Emr, S. D., Hanley-Way, S., and Silhavy, T. J. (1981) Cell 23, 79 -88
- Flower, A. M., Doebele, R. C., and Silhavy, T. J. (1994) J. Bacteriol. 176, 5607-5614
- Stader, J., Benson, S. A., and Silhavy, T. J. (1986) J. Biol. Chem. 261, 15075-15080
- Bieker, K. L., and Silhavy, T. J. (1990) Cell 61, 833-842
- Veenendaal, A. K., van der Does, C., and Driessen, A. J. (2004) Biochim. Biophys. Acta 1694, 81-95
- van der Wolk, J. P., Fekkes, P., Boorsma, A., Huie, J. L., Silhavy, T. J., and Driessen, A. J. (1998) EMBO J. 17, 3631-3639
- Duong, F., and Wickner, W. (1999) EMBO J. 18, 3263-3270
- Schmidt, M., Ding, H., Ramamurthy, V., Mukerji, I., and Oliver, D. (2000) J. Biol. Chem. 275, 15440 -15448
- Triplett, T. L., Sgrignoli, A. R., Gao, F., Yang, Y., Tai, P. C., and Gierasch, L. M. (2001) J. Biol. Chem. 276, 19648 -19655
- Miller, A., Wang, L., and Kendall, D. A. (1998) J. Biol. Chem. 273, 11409 -11412
- Kimura, E., Akita, M., Matsuyama, S., and Mizushima, S. (1991) J. Biol. Chem. 266, 6600 -6606
- Wang, L., Miller, A., and Kendall, D. A. (2000) J. Biol. Chem. 275, 10154 -10159
- Baud, C., Karamanou, S., Sianidis, G., Vrontou, E., Politou, A. S., and Economou, A. (2002) J. Biol. Chem. 277, 13724 -13731
- Cunningham, K., and Wickner, W. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 8630 -8634
- Benach, J., Chou, Y.-T., Fak, J. J., Itkin, A., Nicolae, D. D., Smith, P. C., Wittrock, G., Floyd, D., Gierasch, L. M., and Hunt, J. F. (2003) J. Biol. Chem. 278, 3628 -3638
- Or, E., Navon, A., and Rapoport, T. (2002) EMBO J. 21, 4470 -4479
- Briggs, M. S., Cornell, D. G., Dluhy, R. A., and Gierasch, L. M. (1986) Science 233, 206 -208
- Bruch, M. D., McKnight, C. J., and Gierasch, L. M. (1989) Biochemistry 28, 8554 -8561
- McKnight, C. J., Briggs, M. S., and Gierasch, L. M. (1989) J. Biol. Chem. 264, 17293-17297
- Bruch, M. D., and Gierasch, L. M. (1990) J. Biol. Chem. 265, 3851-3858
- Rizo, J., Blanco, F. J., Kobe, B., Bruch, M. D., and Gierasch, L. M. (1993) Biochemistry 32, 4881-4894
- Wang, Z. L., Jones, J. D., Rizo, J., and Gierasch, L. M. (1993) Biochemistry 32, 13991-13999
- Emr, S. D., and Silhavy, T. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 4599 -4603
- Osborne, A. R., Clemons, W. M., Jr., and Rapoport, T. A. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 10937-10942
- Sharma, V., Arockiasamy, A., Ronning, D. R., Savva, C. G., Holzenburg, A., Braun- stein, M., Jacobs, W. R., Jr., and Sacchettini, J. C. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2243-2248
- Hunt, J. F., Weinkauf, S., Henry, L., McNicholas, P., Oliver, D. B., and Deisenhofer, J. (2002) Science 297, 2018 -2026
- Baud, C., Papanikou, E., Karamanou, S., Sianidis, G., Kuhn, A., and Economou, A. (2005) Protein Expression Purif. 40, 336 -339
- Kourtz, L., and Oliver, D. (2000) Mol. Microbiol. 37, 1342-1356
- Ulbrandt, N. D., London, E., and Oliver, D. B. (1992) J. Biol. Chem. 267, 15184 -15192
- Breukink, E., Nouwen, N., van Raalte, A., Mizushima, S., Tommassen, J., and de Kruijff, B. (1995) J. Biol. Chem. 270, 7902-7907
- Landry, S. J., Jordan, R., McMacken, R., and Gierasch, L. M. (1992) Nature 355, 455-457
- Wang, Z., Feng, H.-P., Landry, S. J., Maxwell, J., and Gierasch, L. M. (1999) Biochem- istry 38, 12537-12546
- Cavanagh, J., Fairbrother, W. J., Palmer, A. G., III, and Skelton, N. J. (1996) Protein NMR Spectroscopy: Principles and Practice, 1st Ed., pp. 95-243, Academic Press, San Diego, CA
- Wu ¨thrich, K. (1986) NMR of Proteins and Nucleic Acids, pp. 27-175, John Wiley and Sons, New York
- Lian, L. Y., Barsukov, I. L., Sutcliffe, M. J., Sze, K. H., and Roberts, G. C. (1994) Methods Enzymol. 239, 657-700
- Clore, G. M., and Gronenborn, A. M. (1982) J. Mag. Res. 48, 402-417
- Clore, G. M., and Gronenborn, A. M. (1983) J. Mag. Res. 53, 423-442
- Campbell, A. P., and Sykes, B. D. (1993) Ann. Rev. Biophys. Biomol. Struct. 22, 99 -122
- Briggs, M. S., and Gierasch, L. M. (1984) Biochemistry 23, 3111-3114
- McKnight, C. J., Stradley, S. J., Jones, J. D., and Gierasch, L. M. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 5799 -5803
- Hoyt, D. W., and Gierasch, L. M. (1991) J. Biol. Chem. 266, 14406 -14412
- Goldstein, J., Lehnhardt, S., and Inouye, M. (1991) J. Biol. Chem. 266, 14413-14417
- Chou, Y. T., Swain, J. F., and Gierasch, L. M. (2002) J. Biol. Chem. 277, 50985-50990
- Sianidis, G., Karamanou, S., Vrontou, E., Boulias, K., Repanas, K., Kyrpides, N., Poli- tou, A. S., and Economou, A. (2001) EMBO J. 20, 961-970
- Mori, H., Araki, M., Hikita, C., Tagaya, M., and Mizushima, S. (1997) Biochim. Bio- phys. Acta 1326, 23-36