Permeability of gas mixtures in glassy polymers with and without plasticization (original) (raw)

Elementary prediction of gas permeability in glassy polymers

The transport model proposed by Minelli and Sarti for the representation of gas and vapor permeability in glassy polymers has been extensively applied to various systems, and the model results are thoroughly analyzed. The approach is based on fundamental theory for the diffusion of low penetrant species in polymers, in which the diffusivity is considered as the product of the molecular mobility, and a ther-modynamic coefficient, accounting for the concentration dependence of the chemical potential. The model relies on the thermodynamic description of the penetrant/polymer systems provided by the NonEquilibrium Thermodynamics for Glassy Polymers (NET-GP) approach. The penetrant mobility is assumed to depend exponentially on penetrant concentration, and the model contains two parameters only: mobility coefficient at infinite dilution and plasticization factor. The model parameters obtained from the analysis of the permeability behaviors of various systems have been examined and general correlations are derived. The mobility coefficient is indeed correlated to the properties of the pure penetrants (penetrant molecular size) and pure polymer (fractional free volume and characteristic energy). This allows the derivation of a simple and general expression for the prediction of the permeability of any penetrant species in glassy polymers in the range of low penetrant pressures, as well as the selectivity of any gas pair. Remarkably, the model predictions are able to represent quite accurately the experimental data available in the literature. Furthermore, the plasticization factor is correlated to the swelling produced by the penetrant into the glassy polymer matrix, obtaining thus a reliable tool for the estimation of the pressure dependence of gas permeability on upstream pressure.

Mixed gas sorption in glassy polymeric membranes: II. CO2/CH4 mixtures in a polymer of intrinsic microporosity (PIM-1)

Journal of Membrane Science, 2014

The individual solubility of CH 4 and CO 2 from binary gas mixtures was measured at 35 °C and up to 35 bar in a polymer of intrinsic microporosity (PIM-1), at different compositions of the gas phase (from 0 to 50 mol% of CO 2). The experiments were conducted on a pressure-decay apparatus equipped with a gas chromatograph, allowing a highly flexible measuring procedure. The gas solubility was plotted versus gas phase composition, total pressure, gas fugacity and second gas concentration. The mixed gas solubility of both species, CH 4 and CO 2 , is lower than the pure gas value at the same fugacity, but the reduction of methane solubility due to the presence of CO 2 is generally more significant. Such behavior is due to the fact that CO 2 has normally higher solubility than methane: indeed the depression of the solubility coefficient with respect to the pure gas value is similar for both gases, when reported at the same concentration of the second gas.The real, mixed gas solubility selectivity is in general higher than the ideal value calculated from pure gas behavior. The ratio between real and ideal solubility selectivity increases with CO 2 concentration in the membrane, according to a single mastercurve, reaching a maximum value of 4, and increases also with the ratio between CO 2 and CH 4 concentration in the membrane. In particular, as in the case of other glassy polymers, the real solubility selectivity of CO 2 over CH 4 is higher than the ideal value if c(CO 2)>c(CH 4), and it is lower than the ideal value if the opposite condition holds true. Such behavior occurs because the competition for sorption is normally less effective on the more abundant penetrant in the polymer. A selectivity-solubility performance plot can be drawn for this system.

Correlations with and prediction of activation energies of gas permeation and diffusion in glassy polymers

Journal of Membrane Science, 1998

Three types of novel correlations for activation energies of gas permeation E P and diffusion E D in amorphous glassy polymers are considered and their application for prediction of the E P and E D values for different gases are examined. The ®rst one is based on application of the group contribution method. Combined consideration of the equation of free volume and Arrhenius equation results in the correlation of E P and E D with free volume V f and fractional free volume (FFV). At last, the correlations between E P and the permeability coef®cient at a certain reference temperature P(T ref ), as well as E D versus D(T ref ), are based on the ful®lment of the so-called compensation effect between activation energies and preexponential factors in activated processes. Examples of applicability of the correlations considered and recommendations for their use in prediction of the E P and E D values are given for transport of various gases in glassy polymers and separately in amorphous glassy polyimides. #

IUPAC-NIST Solubility Data Series 70. The Solubility of Gases in Glassy Polymers

Journal of Physical and Chemical Reference Data, 1999

Solubility of gases in polymers is an important property of polymeric materials relevant to many practical applications. Sorption of small molecules in polymers is a fundamental concern in such areas as food packaging, beverage storage, and polymer processing. However, by far the main interest in the solubility of gases in polymers, and especially in glassy polymers, is related to development of novel advanced materials for gas separation membranes. This is because the concentration gradient of a dissolved gas is the driving force of membrane processes. Development of these novel separation methods resulted in a rapid accumulation, in the recent literature, of thermodynamic data related to the solubility of gases in polymers at different temperatures and pressures. Polymers can be regarded as special cases of media intermediate between liquids and solids. As a consequence, modeling of gas sorption in polymers is very difficult and

CO2/CH4 Sorption Behavior of Glassy Polymeric Membranes Based on Dual Mode Sorption Model

Bulletin de la Société Royale des Sciences de Liège, 2017

Among the various transport models for gas separation via membrane, the best description is done by solution-diffusion model. The main parameters of this model are the sorption and diffusion of the penetrant through the membrane. Studies conducted by various researchers in the field of gas separation indicate that the thermodynamic interaction (sorption effects) in glassy polymers has the major role in the diffusivity, permeability, and selectivity of the membrane, especially in the multi-component gas mixture. In glassy polymers, dual-mode sorption model is frequently used to describe the equilibrium sorption behavior of a polymer-gas system and, based on this sorption model; the permeation behavior is described by the partial immobilization model. In this study, the difference between the sorption mechanism of CO2 and CH4 in glassy polymeric membranes was analyzed by separating the sorption mode and introducing P50/50 parameter (the pressure at which the contribution of both Henry...

Some mechanistic insights into the action of facilitating agents on gas permeation through glassy polymeric membranes

Aiche Journal, 2017

Incorporation of facilitating agents is one of the promising strategies being researched in recent years to cross the Robeson bounds for gas separations using polymeric membranes. The ways in which such inclusions modify the performance of membranes are not always clear. Here, we study the performance of two glassy membranes, Polyfurfuryl alcohol and Polysulfone, in O 2 /N 2 and CO 2 /N 2 separations, with Cobalt phthalocyanin in insoluble and solubilized forms as the facilitating agent. The results show that in general, three effects are important: (i) a barrier effect, (ii) a facilitation effect and (iii) morphological effects on the polymer matrix due to an incompatibility between the particles and the polymer. These results provide some insight into the action of facilitating agents in soluble and insoluble form, when used as membrane additives.

The CO2 permeability and mixed gas CO2/H2 selectivity of membranes composed of CO2-philic polymers

Journal of Membrane Science, 2011

The objective of this work was to design polymeric membranes that have very high CO 2 permeability and high mixed gas selectivity toward CO 2 rather than hydrogen. Therefore the membranes were based on "CO 2 -philic" polymers that exhibit thermodynamically favorable Lewis acid:Lewis base and hydrogen bonding interactions with CO 2 . CO 2 -philic polymers that are solid at ambient temperature include polyfluoroacrylate (PFA); polyvinyl acetate (PVAc); and amorphous polylactic acid (PLA). Literature CO 2 permeability values for PVAc and PLA are disappointingly low. The cast PFA membranes from this study had low permeabilities (45 barrers at 25 • C) and very low CO 2 /H 2 selectivity of 1.4. CO 2 -philic polymers that are liquid at ambient conditions include polyethylene glycol (PEG), polypropylene glycol (PPG), polybutylene glycol with a linear -((CH 2 ) 4 O)-repeat unit (i.e., polytetramethylene ether glycol (PTMEG)), polybutylene glycol (PBG) with a branched repeat unit, perfluoropolyether (PFPE), poly(dimethyl siloxane) (PDMS), and polyacetoxy oxetane (PAO). A small compound, glycerol triacetate (GTA) was also considered because it is similar in chemical structure to a trimer of PVAc. These liquids were tested as supported liquid membranes (SLM) and also (with the exception of PAO and GTA) as rubbery, crosslinked materials. Mixed gas permeability was measured using equimolar mixtures of CO 2 and H 2 feed streams at one atmosphere total pressure in steady-state flux experiments over the 298-423 K temperature range. The most promising SLMs were those composed of PEG, PTMEG, GTA, and PDMS. For example, at 37 • C the PEG-, PTMEG-, GTA-and PDMS-based SLMs exhibited CO 2 /H 2 selectivity values of ∼11, 9, 9, and 3.5, respectively, and CO 2 permeability values of ∼800, 900, 1900, and 2000 barrers, respectively. Crosslinked versions of the PEG, PTMEG and PDMS membranes at 37 • C exhibited selectivity values of ∼5, 6, and 3.5, respectively, and CO 2 permeability values of ∼50, 300, and 3000 barrers, respectively.