Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries (original) (raw)

The continuously increasing number and size of lithium-based batteries developed for largescale applications raise serious environmental concerns. Herein, we address the issues related to electrolyte toxicity and safety by proposing a "water-in-ionomer" type of electrolyte which replaces organic solvents by water and expensive and toxic fluorinated lithium salts by a non-fluorinated, inexpensive and non-toxic superabsorbing ionomer, lithium polyacrylate. Interestingly, the electrochemical stability window of this electrolyte is extended greatly, even for high water contents. Particularly, the gel with 50 wt% ionomer exhibits an electrochemical stability window of 2.6 V vs. platinum and a conductivity of 6.5 mS cm −1 at 20°C. Structural investigations suggest that the electrolytes locally self-organize and most likely switch local structures with the change of water content, leading to a 50% gel with good conductivity and elastic properties. A LiTi 2 (PO 4) 3 /LiMn 2 O 4 lithium-ion cell incorporating this electrolyte provided an average discharge voltage > 1.5 V and a specific energy of 77 Wh kg −1 , while for an alternative cell chemistry, i.e., TiO 2 /LiMn 2 O 4 , a further enhanced average output voltage of 2.1 V and an initial specific energy of 124.2 Wh kg −1 are achieved.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact