Histone deacetylase inhibitors: Opening a new field of research in the development of alternative methods (original) (raw)

Synergetic effects of DNA demethylation and histone deacetylase inhibition in primary rat hepatocytes

Investigational New Drugs

Both, DNA methylation and histone deacetylation play a crucial role in cancer development by silencing the expression of specific tumour suppressor genes. Several studies describe the use of combinations of DNA methyltransferase inhibitors (DNMT-i) and histone deacetylase inhibitors (HDAC-i) as an improved strategy to treat neoplasms. However, no information is available concerning their biological impact on healthy, non-malignant cells, including hepatocytes. Therefore, the effects of the combination of the DNMT-i decitabine (DAC) with the HDAC-i 6-[(4-pyrrolidine-1-ylbenzoyl) amino] hexanoic acid hydroxamate (AN-8) on cell proliferation and differentiation were examined in primary rat hepatocyte cultures. We found that, upon simultaneous exposure of the cells to both compounds, a synergetic anti-proliferative outcome was achieved. This inhibition of DNA synthesis was accompanied by a reduced expression of cyclin-dependent kinase 1 (cdk1), a key cell cycle marker that controls the S/G2/M transition. Compared to exposure of the cells to each agent separately, the combination of lower concentrations of both DAC and AN-8 promoted the maintenance of the differentiated phenotype of the cells as a function of culture time. The functionality of the hepatocytes was evidenced by an increased expression of the phase I biotransformation enzyme cytochrome P 450 (CYP) 1A1 and albumin secretion capacity when both agents were used in combination.

The novel histone deacetylase inhibitor 4-Me2N-BAVAH differentially affects cell junctions between primary hepatocytes

Toxicology, 2007

Histone deacetylase (HDAC) inhibitors show great pharmaceutical potential, particularly in relation to cancer. However, very little is known about their biological outcome on hepatocytes, the major executors of xenobiotic biotransformation in the organism. The current study was set up to investigate the effects of the newly synthesized HDAC inhibitor 5-(4-dimethylaminobenzoyl)aminovaleric acid hydroxamate (4-Me 2 N-BAVAH) on hepatocyte gap junctions and adherens junctions, being main guardians of liver homeostasis. For that purpose, freshly isolated rat hepatocytes were cultivated for 7 days either in the absence or presence of 50 M 4-Me 2 N-BAVAH. Gap junction activity became promoted upon exposure to 4-Me 2 N-BAVAH, which was associated with elevated Cx32 protein levels. By contrast, both Cx26 and Cx43 protein levels were negatively affected. The modifications in connexin protein content were not reflected at the transcriptional level. Finally, neither the expressions nor the cellular localizations of the adherens junction building stones E-cadherin, ␤-catenin and ␥-catenin were altered by 4-Me 2 N-BAVAH, a finding that is in contrast to what is commonly observed in tumor cells following exposure to HDAC inhibitors.

Effect of the histone deacetylase inhibitor trichostatin A on spontaneous apoptosis in various types of adult rat hepatocyte cultures

Biochemical Pharmacology, 2004

Acetylation and deacetylation of histones, catalysed by histone acetyl transferases and histone deacetylases (HDAC), respectively, are known to be involved in gene expression regulation. Here, the effect on the activity and expression of several apoptosis-related proteins of trichostatin A (TSA), a well-known HDAC inhibitor, were studied in short-term (conventional monolayer) and long-term cultured (collagen I gel sandwich cultures and co-cultures) adult rat hepatocytes. No significant effects of TSA on the caspase-3-like activity were seen in rat hepatocytes cultured in a sandwich configuration or in a co-culture with rat liver epithelial cells of primitive biliary origin. In both culture models, the basal level of apoptosis was found to be much lower than in control monolayer cultures. In the latter system, it was found that, after 4 days of culture, TSA decreased the levels of caspase-3 (both proform and p17 fragment) and of the pro-apoptotic protein Bid. No effect of TSA was found on the expression of Bax. As expected, a TSA-mediated increase of acetylated histones H3 and H4 was observed in all culture systems examined. In addition, in the presence of TSA, increased albumin secretion and cytochrome P450 1A1/2 and 2B1-dependent enzyme activities were found in conventional cultures after 7 days. In conclusion, TSA delayed the occurrence of apoptosis and loss of liver specific functions in conventional hepatocyte monolayers. In contrast, in hepatocyte culture models in which spontaneous apoptosis is already minimised through the addition of either extracellular matrix components (sandwich cultures) or nonparenchymal liver cells (co-cultures), TSA did not have any additional anti-apoptotic effect.

Efficacy of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma

Hepatology, 2007

Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide, yet effective therapeutic options for advanced HCC are limited. This study was aimed at assessing the antitumor effect of a novel phenylbutyrate-derived histone deacetylase (HDAC) inhibitor, OSU-HDAC42, vis-à-vis suberoylanilide hydroxamic acid (SAHA), in in vitro and in vivo models of human HCC. OSU-HDAC42 was several times more potent than SAHA in suppressing the viability of PLC5, Huh7, and Hep3B cells with submicromolar median inhibitory concentration (IC 50 ) values. With respect to SAHA, OSU-HDAC42 exhibited greater apoptogenic potency, which was associated with reduced levels of the apoptotic regulators phosphorylated Akt B-cell lymphoma-xL, survivin, cellular inhibitor of apoptosis protein 1, and cellular inhibitor of apoptosis protein 2. The in vivo efficacy of OSU-HDAC42 versus SAHA was assessed in orthotopic and subcutaneous xenograft tumor models in athymic nude mice. Daily oral treatments with OSU-HDAC42 and SAHA, both at 25 mg/kg, suppressed the growth of orthotopic PLC5 tumor xenografts by 91% and 66%, respectively, and of established subcutaneous PLC5 tumor xenografts by 85% and 56%, respectively. This differential tumor suppression correlated with the modulation of intratumoral biomarkers associated with HDAC inhibition and apoptosis regulation. Moreover, the oral administration of OSU-HDAC42 at 50 mg/kg every other day markedly suppressed ectopic tumor growth in mice bearing large tumor burdens (500 mm 3 ) at the start of treatment. Conclusion: OSU-HDAC42 is a potent, orally bioavailable inhibitor of HDAC with a broad spectrum of antitumor activity that includes targets regulating multiple aspects of cancer cell survival. These results suggest that OSU-HDAC42 has clinical value in therapeutic strategies for HCC. (HEPATOLOGY 2007;46:1119-1130

Histone Deacetylase Expressions in Hepatocellular Carcinoma and Functional Effects of Histone Deacetylase Inhibitors on Liver Cancer Cells In Vitro

Cancers, 2019

Hepatocellular carcinoma (HCC) is a leading cause for deaths worldwide. Histone deacetylase (HDAC) inhibition (HDACi) is emerging as a promising therapeutic strategy. However, most pharmacological HDACi unselectively block different HDAC classes and their molecular mechanisms of action are only incompletely understood. The aim of this study was to systematically analyze expressions of different HDAC classes in HCC cells and tissues and to functionally analyze the effect of the HDACi suberanilohydroxamic acid (SAHA) and trichostatin A (TSA) on the tumorigenicity of HCC cells. The gene expression of all HDAC classes was significantly increased in human HCC cell lines (Hep3B, HepG2, PLC, HuH7) compared to primary human hepatocytes (PHH). The analysis of HCC patient data showed the increased expression of several HDACs in HCC tissues compared to non-tumorous liver. However, there was no unified picture of regulation in three different HCC patient datasets and we observed a strong variat...

Histone deacetylase inhibition and the regulation of cell growth with particular reference to liver pathobiology

Journal of Cellular and Molecular Medicine, 2010

• Introduction• Histone Deacetylases- Classification- Histone-dependent mode of action- Non-histone targets• Cell cycle-related histone and non-histone substrates of histone deacetylases- Retinoblastoma- Protein 53 transcription factor- Cyclin-dependent kinase inhibitor p21Cip1- Proliferating cell nuclear antigen• Inhibition of histone deacetylases in liver cells- Physiological condition: effects of histone deacetylase inhibitors on primary hepatocytes- Pathophysiological condition- Liver malignancy – hepatocellular carcinoma- Liver fibrosis- Histone deacetylase inhibitors as modulators of the hepatic stellate cell myofibroblastic phenotype- The role of histone deacetylases in the regulation of pro-fibrogenic and pro-inflammatory cascades• ConclusionsIntroductionHistone Deacetylases- Classification- Histone-dependent mode of action- Non-histone targetsClassificationHistone-dependent mode of actionNon-histone targetsCell cycle-related histone and non-histone substrates of histone deacetylases- Retinoblastoma- Protein 53 transcription factor- Cyclin-dependent kinase inhibitor p21Cip1- Proliferating cell nuclear antigenRetinoblastomaProtein 53 transcription factorCyclin-dependent kinase inhibitor p21Cip1Proliferating cell nuclear antigenInhibition of histone deacetylases in liver cells- Physiological condition: effects of histone deacetylase inhibitors on primary hepatocytes- Pathophysiological condition- Liver malignancy – hepatocellular carcinoma- Liver fibrosis- Histone deacetylase inhibitors as modulators of the hepatic stellate cell myofibroblastic phenotype- The role of histone deacetylases in the regulation of pro-fibrogenic and pro-inflammatory cascadesPhysiological condition: effects of histone deacetylase inhibitors on primary hepatocytesPathophysiological conditionLiver malignancy – hepatocellular carcinomaLiver fibrosisHistone deacetylase inhibitors as modulators of the hepatic stellate cell myofibroblastic phenotypeThe role of histone deacetylases in the regulation of pro-fibrogenic and pro-inflammatory cascadesConclusionsThe transcriptional activity of genes largely depends on the accessibility of specific chromatin regions to transcriptional regulators. This process is controlled by diverse post-transcriptional modifications of the histone amino termini of which reversible acetylation plays a vital role. Histone acetyltransferases (HATs) are responsible for the addition of acetyl groups and histone deacetylases (HDACs) catalyse the reverse reaction. In general, though not exclusively, histone acetylation is associated with a positive regulation of transcription, whereas histone deacetylation is correlated with transcriptional silencing. The elucidation of unequivocal links between aberrant action of HDACs and tumorigenesis lies at the base of key scientific importance of these enzymes. In particular, the potential benefit of HDAC inhibition has been confirmed in various tumour cell lines, demonstrating antiproliferative, differentiating and pro-apoptotic effects. Consequently, the dynamic quest for HDAC inhibitors (HDIs) as a new class of anticancer drugs was set off, resulting in a number of compounds that are currently evaluated in clinical trials. Ironically, the knowledge with respect to the expression pattern and function of individual HDAC isoenzymes remains largely elusive. In the present review, we provide an update of the current knowledge on the involvement of HDACs in the regulation of fundamental cellular processes in the liver, being the main site for drug metabolism within the body. Focus lies on the involvement of HDACs in the regulation of growth of normal and transformed hepatocytes and the transdifferentiation process of stellate cells. Furthermore, extrapolation of our present knowledge on HDAC functionality towards innovative treatment of malignant and non-malignant, hyperproliferative and inflammatory disorders is discussed.

Histone deacetylase inhibitors for treatment of hepatocellular carcinoma

Acta Pharmacologica Sinica, 2005

Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Surgical resection has been considered the optimal treatment approach, but only a small proportion of patients are suitable candidates for surgery, and the relapse rate is high. Approaches to prevent recurrence, including chemoemboliza-tion before and adjuvant therapy after surgery, have proven to have a limited benefit; liver transplantation is successful in treating limited-stage HCC because only a minority of patients qualify for transplantation. Therefore, new therapeutic strategies are urgently needed. Because in addition to the classical genetic mechanisms of deletion or inactivating point mutations, epigenetic alterations, such as hyperacetylation of the chromatin-associated histones (responsible for gene silencing), are believed to be involved in the development and progression of HCC, novel compounds endowed with a histone deacetylase (HDAC) inhibitory activity are an attractive therapeutic approach. In particular, pre-clinical results obtained using HA-But, an HDAC inhibitor in which butyric acid residues are esterified to a hyaluronic acid backbone and characterized by a high affinity for the membrane receptor CD44, indicated that this class of compounds may represent a promising approach for hepatocellular carcinoma treatment.

Differential immunotoxicity of histone deacetylase inhibitors on malignant and naïve hepatocytes

Experimental and Toxicologic Pathology, 2011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Histone deacetylase inhibitors induce in human hepatoma HepG2 cells acetylation of p53 and histones in correlation with apoptotic effects

International Journal of Oncology, 2008

This report shows that histone deacetylase inhibitors (HDACIs) induced apoptosis in human hepatoma HepG2 cells in a dose-and time-dependent manner. Trichostatin A (TSA), ITF2357 and suberoylanilide hydroxamic acid (SAHA), which were very effective agents, caused apoptotic effects after a lag phase of 12-16 h. In order to elucidate the mechanism of HDACIs action in HepG2 cells we have studied the effects of TSA, ITF2357 and SAHA on acetylation of p53 and histones H2A, H2B, H3 and H4. It was observed that HDACIs rapidly induced acetylation of these proteins, being the effects clearly visible already at 30 min of treatment at the same doses which caused apoptosis. Analysis of the immunocomplexes, obtained from nuclear extracts using an antibody against p53, revealed the presence of acetylated p53 together with acetylated forms of histones and histone acetyltransferases p300 and PCAF. Experiments performed using pifithrin-α, a reversible inhibitor of p53, showed a correlation between acetylation of p53 and induction of apoptosis. In addition treatment with siRNA against p53 indicated that p53 is involved in the acetylation of histones. In conclusion, this report suggests that complexes constituted by acetylated p53, acetylated histones and coactivators can play a central role in HDACI-induced apoptosis in HepG2 cells.