Zn Metal Anodes for Zn-Ion Batteries in Mild Aqueous Electrolytes: Challenges and Strategies (original) (raw)
Related papers
Energy Materials, 2023
Mildly acidic aqueous zinc (Zn) batteries are promising for large-energy storage but suffer from the irreversibility of Zn metal anodes due to parasitic H2 evolution, Zn corrosion, and dendrite growth. In recent years, increasing efforts have been devoted to overcoming these obstacles by regulating electrolyte structures. In this review, we investigate progress towards mildly acidic aqueous electrolytes for Zn batteries, with special emphasis on how the microstructures (in the bulk phase and on the surface of Zn anodes) affect the performance of Zn anodes. Moreover, effective computational simulations and characterization measurements for the structures of bulk electrolytes and Zn/electrolyte interfaces are discussed, along with perspectives for the direction of further investigations.
Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries
Nano Energy, 2020
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A Facile Chemical Method Enabling Uniform Zn Deposition for Improved Aqueous Zn-Ion Batteries
Nanomaterials , 2021
Rechargeable aqueous Zn-ion batteries (ZIBs) have gained great attention due to their high safety and the natural abundance of Zn. Unfortunately, the Zn metal anode suffers from dendrite growth due to nonuniform deposition during the plating/stripping process, leading to a sudden failure of the batteries. Herein, Cu coated Zn (Cu–Zn) was prepared by a facile pretreatment method using CuSO4 aqueous solution. The Cu coating transformed into an alloy interfacial layer with a high affinity for Zn, which acted as a nucleation site to guide the uniform Zn nucleation and plating. As a result, Cu–Zn demonstrated a cycling life of up to 1600 h in the symmetric cells and endowed a stable cycling performance with a capacity of 207 mAh g−1 even after 1000 cycles in the full cells coupled with a V2O5-based cathode. This work provides a simple and effective strategy to enable uniform Zn deposition for improved ZIBs.
Frontiers in Chemistry, 2022
Owing to its low cost and high safety, metallic zinc has received considerable attention as an anode material for zinc aqueous batteries (ZIBs). However, the Zn metal instability as a result ultrafast of obstinate dendrite formation, free-water-induced parasite reactions, and corrosive electrolytes has detrimental effects on the implementation of ZIBs. We present an alternative stable electrolyte for ZIBs based on a zinc chloride/ethylene glycol deep eutectic solvent (DES). This electrolyte consists of abundant low-cost materials and a utilizable Zn2+ concentration of approximately 1 M. It combines the advantages of the aqueous and DES media to provide safe and reversible Zn plating/stripping with a two-fold increase in the cycling life compared to that of conventional aqueous electrolytes. With these advantages, the Zn symmetric cell operates at 0.2 mA cm−2 for 300 h. Due to its high efficiency and compositional versatility, this electrolyte enables the investigation of a non-aqueo...
2024
Aqueous zinc-metal batteries hold immense promise for large-scale energy storage applications due to their costeffectiveness and superior safety features. However, uncontrolled dendrite growth, corrosion and side reactions in aqueous environments destabilize the electrode/electrolyte, leading to Zn plating/striping irreversibility. Herein, a low-cost, non-toxic functional electrolyte additive, tetraethyl ammonium bromide (TEAB), addresses this challenge. The preferential adsorption of TEAB on the surface of the Zn anode endows the Zn/electrolyte interface with an optimized electric field distribution and abundant active sites for the uniform and dendrite-free Zn 2+ deposition. Moreover, TEAB disrupts the H-bond network between the electrolytes, effectively suppressing waterinduced side reactions and corrosion. Consequently, a Zn||Zn symmetric battery achieves a long cycle life of 4,950 h at 1 mA cm-2 , and the average coulombic efficiency of the Zn||Cu battery reaches as high as 99.5%. Additionally, even after 2,000 cycles at 3 A g-1 , the capacity retention of the Zn||MnO 2 battery remains at 91.22%. The non-alkaline full Zn||air batteries deliver remarkable cycling stability up to 270 h.
SSRN Electronic Journal, 2022
Aqueous electrochemical energy storage systems that rely on earth-abundant elements are considered as cost-effective alternatives to current lithium-ion batteries which have dominated the technological landscape. For zinc-based energy storage, dendrite growth is an underlying challenge that needs to be addressed to enact high performance and long-term stability. In the present study, we employ atomic layer deposition to produce a thin tin oxide layer that allows dendrite-free cycling for aqueous zinc-ion batteries. Tin oxide is particularly interesting as it provides two distinct advantages-dendrite-free cycling and mitigation of parasitic hydrogen gas evolution. The presence of the tin oxide layer leads to hydrogen gas suppression and homogeneous zinc plating/stripping, both of which are essential to improve the performance of zinc-ion batteries. When paired in a full-cell con guration with manganese oxide, this anode delivers a high speci c capacity of 250 mAh g-1 at an imposed current rate of 30 mA g-1. Through density functional theory calculations, we elucidate further that the adsorption energy of Zn for bare Zn is higher than that in the presence of a tin oxide layer.
Design of Zn anode protection materials for mild aqueous Zn-ion batteries
Energy Materials, 2022
Rechargeable aqueous Zn-ion batteries (AZIBs) are considered alternative stationary storage systems for largescale applications due to their high safety, low cost, and high power density. However, Zn anode issues including dendrite formation and side reactions greatly hinder the practical application of AZIBs. To solve the Zn anode issues, various strategies based on material designs have been developed. It is necessary to analyze and classify these strategies according to different materials, because different properties of materials determine the underlying mechanisms. In this review, we briefly introduce the fundamental issues in Zn anodes. Furthermore, this review highlights the material designs for the protection of Zn anodes in mild AZIBs. Finally, we also offer insight into potential directions in the material designs to promote the development of AZIBs in the future.
Batteries
Aqueous rechargeable zinc-ion batteries (ARZIBs) are potential candidates for grid-scale energy storage applications. In addition to its reversible chemistry in aqueous electrolytes, Zn metal is stable in water and air. However, there are critical challenges, such as non-uniform plating, hydrogen evolution, corrosion, and the formation of a passivation layer, which must be addressed before practical applications. In this study, the surface of Zn metal was coated with room-temperature bulk liquid-metal and liquid-metal nanoparticles to facilitate the uniform plating of Zn–ions during cycling. A simple probe ultrasonication method was used to prepare the liquid-metal nanoparticles, and a nanoparticle suspension film was formed through spin coating. At an areal capacity and current density of 0.5 mAh cm−2 and 0.5 mA cm−2, respectively, symmetric cells composed of bare Zn metal electrodes were prone to short-circuiting after ~45 h of deposition/striping cycles. However, under the same o...
Mechanism and Optimizations of Aqueous Zinc-ion Battery
Highlights in Science, Engineering and Technology
Nowadays, more and more problems of environmental deterioration make the development of environmentally friendly energy imminent. For the requirements of low cost, high security, and high efficiency, aqueous Zn-ion batteries are a promising trend for research. In this paper, the mechanism of aqueous Zn-ion batteries will be illustrated in three aspects: cathode materials, zinc anode, and electrolytes. Moreover, possible alternatives for each part of the batteries will be comprehensively illustrated in detail. In addition, the challenges such as short capacity, zinc dendrites, and corrosion and passivation will be analyzed and the possible corresponding solutions will be proposed. Finally, a concise conclusion will be given.
Journal of Power Sources, 2022
Sustainability, environmental and safety concerns raised by the increasing demand of batteries are driving research towards post-lithium technologies. Rechargeable Zn batteries are strong candidates, but still not practically viable, owing to the extensively studied, but poorly understood unstable behavior of Zn metal upon discharge-charge cycling. This limiting factor warrants more fundamental investigations and the present report provides the lacking molecular-level information on the Zn-based compounds forming at the electrode/electrolyte interface as a result of electrochemical cyclic in weakly acidic aqueous electrolyte. The results are obtained using ex situ X-ray absorption spectromicroscopy maps, modelled mathematically and complemented with cyclic voltammetry, symmetric-cell tests and electron microscopy. We have identified the role of the zincate precipitation resulting from local alkalinization during recharge, combined with additional zincate formation and decomposition to zinc oxide during discharge. The mathematical model allowed a transparent interpretation of morphochemical changes observed. The synergy of these processes leads to electrochemical localization effects, resulting in the formation of a complexly structured and low conductive ZnO-based template, that might play a role in driving shape changes.