Adsorption Heat Storage: State-of-the-Art and Future Perspectives (original) (raw)

A study on thermal energy storage using open adsorption system

Bulletin of the Faculty of Engineering. Mansoura University

Theoretical and experimental investigation on the thermal energy storage of an open adsorption system is presented. Laboratory experiments have been conducted, using silica gel as adsorbent, to study the effect of flow rate and inlet relative humidity on the amount of energy stored. The theoretical model, used to describe the mass and energy transfers in the system, was solved using COMSOL TM software. The model was validated against laboratory experiments performed at varying conditions. Temperature and energy density profiles during the adsorption process have been analyzed for various conditions. Results show that the storage density increases with the increase of the flow rate. However, at higher flow rates lower discharge

Towards industrial-scale adsorptive heat storage systems: From state-of-the-art selected examples to preliminary conception guidelines

Journal of energy storage, 2022

This review article presents a state-of-the-art in the field of adsorptive heat storage and transformation, based on a selection of representative applications. Examples are selected with respect to their potential application to low-grade heat storage at industrial scale and then reviewed with regard to their technology readiness level. The unclear border between thermochemical heat storage and adsorptive heat transformation emerging from the literature is questioned based on thermodynamic considerations. It appears that advances in the field of adsorptive heat transformation should benefit to storage applications, too. The most investigated field is solar heat storage in individual dwellings, introducing the concepts of atmospheric or pressurized systems (often corresponding to open or closed systems respectively). Other system's components as the type of heat exchangers (convective or conductive) and reactors (static or continuous) are also fundamental points to be taken into account. Up to now, the most advanced response to heat and mass transfer issues in heat storage systems is connected to the coating technique, which has proven its feasibility in commercial adsorptive chillers. Novel thermodynamic cycle engineering and technical solutions, like hybrid coated/bulk adsorbent reactors, monolithic porous materials, flash steam or liquid water fed reactors, are still at an early stage of development. Finally, the trends, limits and challenges of the existing technical solutions have been enlightened with the aim to help the reader to choose and design the most adapted storage system.

Closed Adsorption Heat Storage—A Life Cycle Assessment on Material and Component Levels

Energies

Closed adsorption storages have been investigated in several projects for heat storage in building applications with focus on energy density and performance. This study complements this research with the assessment of the environmental impacts over the life cycle. Global warming potential (GWP) was chosen as the assessment criterion. Selected sorption materials in combination with water as the refrigerant were analyzed first by themselves and then embedded in a generic storage configuration. Sensible storage in water served as the reference benchmark. Results on material and component level showed that the relative storage capacity compared to water under realistic operating conditions reached values of below 4 and 2.5, respectively, in the best cases. Since the effort for producing the sorbents as well as the auxiliary material demand for assembling storage components was significantly higher than in the reference case, the specific environmental impact per storage capacity also tu...

Experimental investigation of an adsorptive thermal energy storage

International Journal of Energy Research, 2007

A zeolite-water adsorption module, which has been originally constructed for an adsorption heat pump, has been experimentally investigated as an adsorptive thermal energy storage unit. The adsorber/desorber heat exchanger contains 13.2 kg of zeolite 13X and is connected to an evaporator/condenser heat exchanger via a butterfly valve. The flow rate of the heat transfer fluid in the adsorber/desorber unit has been changed between 0.5 and 2.0 l min À1 , the inlet temperature to the evaporator between 10 and 408C. It turned out that the higher the flow rate inside the adsorber/desorber unit the faster and more effective is the discharge of heat. However, at lower flow rates higher discharge temperatures are obtained. Storage capacities of 2.7 and 3.1 kWh have been measured at the evaporator inlet temperatures of 10 and 408C, respectively, corresponding to thermal energy storage densities of 80 and 92 kWh m À3 based on the volume of the adsorber unit. The measured maximum power density increases from 144 to 165 kWh m À3 as the flow rate in the adsorber increases from 0.5 to 2 l min À1. An internal insulation in form of a radiation shield around the adsorber heat exchanger is recommended to reduce the thermal losses of the adsorptive storage.

Experimental study of an adsorption heat storage systems for building applications

Renewable Bioresources, 2016

In this paper, an Adsorption Heat Storage System (AdHS-R134a)/heating system utilising Vermiculite and Calcium Chloride composite adsorbent material was experimentally investigated. The main aim of the experimental investigations is to carry out preliminary tests on a small scale Adsorption Heat Storage Systems (AdHS-R134a) using a heat pump circuit as the regeneration heat source. The test rig was constructed using Vertical Glass Pipes with a heat pump circuit using a mini compressor for transporting the refrigeration gas as a heat source for desorption cycle. The system also incorporates condenser coils, evaporator coils, and an expansion valve. The integration with a heat pump circuit is to analyse the performance of an AdHS-R134a using off-peak power in desorption/charging cycle or utilising renewable energy sources to minimise conventional energy generated from fossil fuels. Firstly, desorption phase occurs during night hours, when cheap off-peak electricity is available under the 'Economy 7' tariff that is more suitable for households with night storage heaters or if we use lots of electricity at night. Secondly, in the heat pumping phase/adsorption loop which will occur during the day. The useful heat of adsorption in the adsorbent pipe could be used for underfloor heating (35°C-40°C), or for domestic hot water production (55°C-60°C) during the day. The maximum temperature lift observed from the adsorption process is 68.67°C (inside adsorption pipe) with the corresponding COP of 0.55-1.39.

Thermal energy storage: Recent developments and practical aspects

Progress in Energy and Combustion Science, 2016

Thermal energy storage (TES) transfers heat to storage media during the charging period, and releases it at a later stage during the discharging step. It can be usefully applied in solar plants, or in industrial processes, such as metallurgical transformations. Sensible, latent and thermo-chemical media store heat in materials which change temperature, phase or chemical composition, respectively. Sensible heat storage is well-documented. Latent heat storage, using phase change materials (PCMs), mainly using liquidsolid transition to store latent heat, allows a more compact, efficient and therefore economical system to operate. Thermo-chemical heat storage (TCS) is still at an early stage of laboratory and pilot research despite its attractive application for long term energy storage. The present review will assess previous research, while also adding novel treatments of the subject. TES systems are of growing importance within the energy awareness: TES can reduce the LCOE (levelized cost of electricity) of renewable energy processes, with the temperature of the storage medium being the most important parameter. Sensible heat storage is well-documented in literature and applied at large scale, hence limited in the content of the present review paper. Latent heat storage using PCMs is dealt with, specifically towards high temperature applications, where inorganic substances offer a high potential. Finally, the use of energy storage through reversible chemical reactions (thermo-chemical storage, TCS) is assessed. Since PCM and TCS storage media need to be contained in a capsule (sphere, tube, sandwich plates) of appropriate materials, potential containment materials are examined. A heat transfer fluid (HTF) is required to convey the heat from capture, to storage and ultimate re-use. Particle suspensions offer a valid alternative to common HTF, and a preliminary assessment confirms the advantages of the upflow bubbling fluidized bed and demonstrates that particulate suspensions enable major savings in investment and operating costs. Novel treatments of the TES subject in the review involve the required encapsulation of the latent and chemical storage media, the novel development of powder circulation loops as heat transfer media, the conductivity enhancement of PCMs, the use of lithium salts, among others.

Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems

Energies

Sorption thermochemical storage systems can store thermal energy for the long-term with minimum amount of losses. Their flexibility in working with sustainable energy sources further increases their importance vis-à-vis high levels of pollution from carbon-based energy forms. These storage systems can be utilized for cooling and heating purposes or shifting the peak load. This review provides a basic understanding of the technologies and critical factors involved in the performance of thermal energy storage (TES) systems. It is divided into four sections, namely materials for different sorption storage systems, recent advances in the absorption cycle, system configuration, and some prototypes and systems developed for sorption heat storage systems. Energy storage materials play a vital role in the system design, owing to their thermal and chemical properties. Materials for sorption storage systems are discussed in detail, with a new class of absorption materials, namely ionic liquid...

An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling

Applied Energy, 2013

Growing energy demand and global climate change are compelling reasons to look for effective utilisation of waste thermal energy and renewable energy resources. Fifteen percent of the electricity produced in the whole world is employed for refrigeration and airconditioning processes of various kinds. Low-temperature heat operated environment-friendly adsorption cooling systems are emerging as viable alternatives to electricity-driven vapour compression refrigeration systems. Comparatively bigger sizes of adsorption based cooling units, due to their low specific cooling power, are preventing successful commercialization of the technology. Efforts are on to enhance the performance of adsorption systems through improvements in adsorbents properties, use of advanced cycles, etc. Recent application of nano-technology in the development of adsorbent material may be a big step forward towards making this technology competitive with available technologies in the market. This paper traces the evolution of the technology and analyses the obstacles to wide spread use of adsorption chillers.

Experimental and Numerical Assessment of a Novel All-In-One Adsorption Thermal Storage with Zeolite for Thermal Solar Applications

Applied Sciences, 2020

The paper discusses the performances of a novel all-in-one adsorption thermal storage based on steam vapour and zeolite 13X for industrial end-users. Steam production/condensation for the adsorption/desorption processes are executed within the same vacuum reactor, where the zeolite is heated and cooled by the thermal fluid which flows within a heat exchanger. Both experimental approach and numerical method are used to assess the behaviour and energy performances of the novel system. So, a medium-scale prototype was constructed and some experimental tests for the charging and discharging phases were carried out, producing useful data for the validation of a time-dependent model of the adsorption/desorption processes, which resulted very reliable in the simulation of the thermal storage system. The charging and discharging efficiency of thermal energy can reach values higher than 80% and 50%, respectively. The experimental campaign and the simulative activities highlighted some operat...