Automated Diagnosis of COVID-19 Using Deep Features and Parameter Free BAT Optimization (original) (raw)

Detection of COVID-19 Patients from CT Scan and Chest X-ray Data Using Modified MobileNetV2 and LIME

Healthcare, 2021

The COVID-19 global pandemic caused by the widespread transmission of the novel coronavirus (SARS-CoV-2) has become one of modern history’s most challenging issues from a healthcare perspective. At its dawn, still without a vaccine, contagion containment strategies remained most effective in preventing the disease’s spread. Patient isolation has been primarily driven by the results of polymerase chain reaction (PCR) testing, but its initial reach was challenged by low availability and high cost, especially in developing countries. As a means of taking advantage of a preexisting infrastructure for respiratory disease diagnosis, researchers have proposed COVID-19 patient screening based on the results of Chest Computerized Tomography (CT) and Chest Radiographs (X-ray). When paired with artificial-intelligence- and deep-learning-based approaches for analysis, early studies have achieved a comparatively high accuracy in diagnosing the disease. Considering the opportunity to further expl...

Rapid COVID-19 Diagnosis Using Deep Learning of the Computerized Tomography Scans

IEEE, 2020

Several studies suggest that COVID-19 may be accompanied by symptoms such as a dry cough, muscle aches, sore throat, and mild to moderate respiratory illness. The symptoms of this disease indicate the fact that COVID-19 causes noticeable negative effects on the lungs. Therefore, considering the health status of the lungs using X-rays and CT scans of the chest can significantly help diagnose COVID-19 infection. Due to the fact that most of the methods that have been proposed to COVID-19 diagnose deal with the lengthy testing time and also might give more false positive and false negative results, this paper aims to review and implement artificial intelligence (AI) image-based diagnosis methods in order to detect coronavirus infection with zero or near to zero false positives and false negatives rates. Besides the already existing AI image-based medical diagnosis method for the other well-known disease, this study aims on finding the most accurate COVID-19 detection method among AI methods such as machine learning (ML) and artificial neural network (ANN), ensemble learning (EL) methods.

Automatic Detection of Covid using CT Scans

International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2022

Covid 19 is an infectious disease which is caused by SARS-CoV-2 coronavirus and spreads very quickly from an infected person. There are many ways to detect the presence of covid using classical methods like RT-PCR, Rapid tests, X rays and CT scans. This paper focuses on using CT scans to detect the presence of Covid 19 using deep learning. This method provides a faster, simpler and safer way to diagnose Covid 19. The deep learning model using ResNet50 with additional image preprocessing techniques with a customized dataset detects Covid 19 with an accuracy of 89%. This paper proposes an end-toend application which provides a deep learning backend to test the CT Image and a Web Front-end for users to diagnose Covid 19 and get the result instantaneously.

Automatic prediction of COVID− 19 from chest images using modified ResNet50

Multimedia Tools and Applications

Recently coronavirus 2019 (COVID-2019), discovered in Wuhan city of China in December 2019 announced as world pandemic by the World Health Organization (WHO). It has catastrophic impacts on daily lives, public health, and the global economy. The detection of coronavirus (COVID−19) is now a critical task for medical specialists. Laboratory methods for detecting the virus such as Polymerase Chain Reaction, antigens, and antibodies have pros and cons represented in time required to obtain results, accuracy, cost and suitability of the test to phase of infection. The need for accurate, fast, and cheap auxiliary diagnostic tools has become a necessity as there are no accurate automated toolkits available. Other medical investigations such as chest X−ray and Computerized Tomography scans are imaging techniques that play an important role in the diagnosis of COVID−19 virus. Application of advanced artificial intelligence techniques for processing radiological imaging can be helpful for the accurate detection of this virus. However, Due to the small dataset available for COVID−19, transfer learning from pre−trained convolution neural networks, CNNs can be used as a promising solution for diagnosis of coronavirus. Transfer learning becomes an effective mechanism by transferring knowledge from generic object recognition tasks to domain-specific tasks. Hence, the main contribution of this paper is to exploit the pre−trained deep learning CNN architectures as a cornerstone to enhance and build up an automated tool for detection and diagnosis of COVID−19 in chest X−Ray and Computerized Tomography images. The main idea is to make use of their convolutional neural network structure and its learned weights on large datasets such as ImageNet. Moreover, a modification to ResNet50 is proposed to classify the patients as COVID infected or not. This modification includes adding three new layers, named, Conv , Batch Normaliz and Activation Relu layers. These layers are injected in the ResNet50 architecture for accurate discrimination and robust feature extraction. Extensive experiments are carried out to assess the performance of the proposed model on COVID−19 chest X−Ray and Computerized Tomography scan images. Experimental results approve that the proposed modification, injected layers, increases the diagnosis accuracy to 97.7% for Computerized Tomography dataset and 97.1% for X−Ray dataset which is superior compared to other approaches.

Application of Deep Learning for Early Detection of COVID-19 Using CT-Scan Images

2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), 2021

COVID-19 pandemic caused a vast impact worldwide. The imbalance between the number of tools for COVID-19 detection and the demand for COVID-19 tests from citizens has overwhelmed the government. To overcome this problem, artificial intelligence is utilized, specifically in the deep learning field. In this paper, we propose FJCovNet, a new deep learning model based on DenseNet121. FJCovNet managed to get an accuracy of 98.14%, surpassing Xception with an accuracy of 84,24%, VGG19 with an accuracy of 95.25%, and ResNet50 with accuracy of 91.53%. FJCovNet also managed to get less training time with 612 seconds, lesser than VGG19 with 808 seconds and ResNet50 with 809 seconds, and only slightly more than Xception with 609 seconds.

Automatic Classification of the Severity of COVID-19 Patients Based on CT Scans and X-rays Using Deep Learning

European Journal of Molecular & Clinical Medicine, 2021

The 2019 novel coronavirus (COVID-19), which originated from China, has been declared a pandemic by the World Health Organization (WHO) as it has surpassed over eighty three million cases worldwide, with nearly two million deaths. The unexpected exponential increase in positive cases and the limited number of ventilators, personal safety equipment and COVID-19 test kits, especially in Low to Middle Income Countries (LMIC), had put undue pressure on medical staff, first responders as well as the overall health care systems. The Real-Time Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) test is the decisive test for the diagnosis of COVID-19, but a significant percentage of positive tests return a false negative result. For patients in LMICs, the availability and affordability of routine Computerized Tomography (CT) scanning and chest X-rays is better compared to an RT-PCR test, especially in rural areas. Chest X-rays and CT scans can aid in the prognosis and management of COVID-19 positive patients, but are not recommended for diagnostic purposes. Using Deep Convolutional Neural Networks (CNN), three network based pre-trained models (AlexNet, GoogleNet and Resnet50) were used for the automatic classification of positive COVID-19 chest X-Rays and CT scans based on their severity into three classes-normal, mild/moderate, severe. This classification can aid health care workers in performing expeditious analysis of large numbers of thoracic CT scans and chest X-rays of COVID-19 positive patients, and aid in their prognosis and management. The images were obtained from public repositories, and were verified and classified by trained and highly experienced radiologist from Agha Khan University Hospital prior to simulations. The images were augmented and trained, and ResNet50 was concluded to achieve the highest accuracy. This research can be used for other lung infections, and can aid the authorities in the preparations of future pandemics.

COVID-19 Detection Based on Lung Ct Scan Using Deep Learning Techniques

Computational and Mathematical Methods in Medicine, 2022

SARS-CoV-2 is a novel virus, responsible for causing the COVID-19 pandemic that has emerged as a pandemic in recent years. Humans are becoming infected with the virus. In 2019, the city of Wuhan reported the first-ever incidence of COVID-19. COVID-19 infected people have symptoms that are related to pneumonia, and the virus affects the body’s respiratory organs, making breathing difficult. A real-time reverse transcriptase-polymerase chain reaction (RT-PCR) kit is used to diagnose the disease. Due to a shortage of kits, suspected patients cannot be treated promptly, resulting in disease spread. To develop an alternative, radiologists looked at the changes in radiological imaging, like CT scans, that produce comprehensive pictures of the body of excellent quality. The suspected patient’s computed tomography (CT) scan is used to distinguish between a healthy individual and a COVID-19 patient using deep learning algorithms. A lot of deep learning methods have been proposed for COVID-19...

COV-CTX: A Deep Learning Approach to Detect COVID-19 from Lung CT and X-Ray Images

International Journal of Online and Biomedical Engineering (iJOE)

With the massive outbreak of coronavirus (COVID-19) disease, the demand for automatic and quick detection of COVID-19 has become a crucial challenge for scientists around the world. Many researchers are working on finding an automated and effective system for detecting COVID-19. They have found that computed tomography (CT-scan) and X-ray images of COVID-19 infected patients can provide more accurate and faster results. In this paper, an automated system is proposed named as COV-CTX which can detect COVID-19 from CT-scan and X-ray images. The system consists of three different CNN models: VGG16, VGG16- InceptionV3-ResNet50, and Francois CNN. The models are trained with CT-scan and X-ray images individually to classify COVID-19 and non-COVID patients. Finally, the results of the models are combined to develop a voting ensemble of classifiers to ensure more accurate and precise results. The three models are trained and validated with 9412 CT-scan images (4756 numbers of COVID positive...

CP_DeepNet: a novel automated system for COVID-19 and pneumonia detection through lung X-rays

Multimedia Tools and Applications , 2024

In recent years, the COVID-19 outbreak has affected humanity across the globe. The frequent symptoms of COVID-19 are identical to the normal flu, such as fever and cough. COVID-19 disseminates rapidly, and it has become a prominent cause of mortality. Nowadays, the new wave of COVID-19 has created significant impacts in China. This virus can have detrimental effects on people of all ages, particularly the elderly, due to their weak immune systems. The real-time polymerase chain reaction (RT-PCR) examination is typically performed for the identification of coronavirus. RT-PCR is an expensive and time requiring method, accompanied by a significant rate of false negative detections. Therefore, it is mandatory to develop an inexpensive, fast, and reliable method to detect COVID-19. X-ray images are generally utilized to detect diverse respiratory conditions like pulmonary infections, breathlessness syndrome, lung cancer, air collection in spaces of the lungs, etc. This study has also utilized a chest X-ray dataset to identify COVID-19 and pneumonia. In this research work, we proposed a novel deep learning model CP_DeepNet, which is based on a pre-trained deep learning model such as SqueezeNet, and further added three blocks of convolutional layers to it for assessing the classification efficacy. Furthermore, we employed a data augmentation method for generating more images to overcome the problem of model overfitting. We utilized COVID-19 radiograph dataset for evaluating the performance of the proposed model. To elaborate further, we obtained significant results with accuracy of 99.32%, a precision of 100%, a recall of 99%, a specificity of 99.2%, an area under the curve of 99.78%, and an F1-score of 99.49% on CP_DeepNet for the binary classification of COVID-19 and normal class. We also employed CP_DeepNet for the multiclass classification of COVID-19, pneumonia, and normal person, in which CP_DeepNet achieved accuracy, precision, recall, specificity, area under curve, and F1-score of 99.62%, 99.79%, 99.52%, 99.69, 99.62, and 99.72%, respectively. Comparative analysis of experimental results with different preexisting techniques shows that the proposed model is more dependable as compared to RT-PCR and other prevailing modern techniques for the detection of COVID-19.

Automated Covid-19 Detection System with CNN using Chest X-Ray and CT-Scans

Covid19 is the menace of this century. World Health Organization (WHO) declared it pandemic in February, 2020. This RNA virus has catastrophic impact of the entire human civilization since it was initially reported to have been erupted from Wuhan, a city in Hubei province of China in late December 2019. In the first wave millions of people died in many countries. Even the developed countries like USA, France, Italy, United Kingdom etc. were in shock and could not prevent loss of human lives with their well-established medical infrastructure. Strict lockdown, quarantines were imposed. The hospitals were outnumbered by the severely ill patients who needed ventilation support. Many died without treatment, dead bodies were on the streets and mass graves became a practice. Developing and underdeveloped countries faced even more disastrous situations. Since then the virus is mutating and giving new challenges to human society in developing a cure. Until now RTPCR and other test are carried out to detect the disease. But they take somewhat longer time. So researchers are using artificial intelligence based techniques especially deep learning methods to develop new models using the CT scans (CTS) and chest X-ray (CXR) images of the patients to detect the disease in real time. This work focuses on the methods developed so far for detecting Covid-19 using convolutional neural network and compare their performances.