Solanum incanum extract (SR-T100) induces human cutaneous squamous cell carcinoma apoptosis through modulating tumor necrosis factor receptor signaling … (original) (raw)
Related papers
Oncotarget, 2017
Melanoma, a cancer derived from melanocytes, is one of the most chemoresistant cancers and tends to metastasize. Once it metastasizes, the prognosis is poor. Even with the recent advancement of targeted therapy and immunotherapy, the prognosis remains discouraging. SR-T100, a Solanum incanum extract, shows anticancer effects against several cancers; however, its therapeutic efficacy against melanoma and established metastasis remains unknown. In this study, we showed that SR-T100 induces apoptosis, DNA damage, and G0/G1 cell cycle arrest in murine B16 melanoma cells in vitro. In vivo, intralesional injection of SR-T100 decreased the tumor size of the regional melanoma in the foot pad. Moreover, intraperitoneal injection of SR-T100 inhibited the growth and the number of established melanoma metastases in the lungs. Our study highlights SR-T100 as a potential novel treatment for established tumors from regional and metastatic melanoma.
Oncotarget, 2017
Melanoma, a cancer derived from melanocytes, is one of the most chemoresistant cancers and tends to metastasize. Once it metastasizes, the prognosis is poor. Even with the recent advancement of targeted therapy and immunotherapy, the prognosis remains discouraging. SR-T100, a Solanum incanum extract, shows anticancer effects against several cancers; however, its therapeutic efficacy against melanoma and established metastasis remains unknown. In this study, we showed that SR-T100 induces apoptosis, DNA damage, and G0/G1 cell cycle arrest in murine B16 melanoma cells in vitro. In vivo, intralesional injection of SR-T100 decreased the tumor size of the regional melanoma in the foot pad. Moreover, intraperitoneal injection of SR-T100 inhibited the growth and the number of established melanoma metastases in the lungs. Our study highlights SR-T100 as a potential novel treatment for established tumors from regional and metastatic melanoma.
Antioxidants
The term sinecatechins designates an extract containing a high percentage of catechins obtained from green tea, which is commercially registered as Veregen or Polyphenon E (PE) and may be considered for treatment of cutaneous squamous cell carcinoma (cSCC) and actinic keratosis (AK). As shown here, treatment of four cSCC cell lines with 200 µg/mL of PE resulted in strong, dose-dependent decrease in cell proliferation (20–30%) as well as strongly decreased cell viability (4–21% of controls, 48 h). Effects correlated with loss of mitochondrial membrane potential, whereas early apoptosis was less pronounced. At the protein level, some activation of caspase-3 and enhanced expression of the CDK inhibitor p21 were found. Loss of MMP and induced cell death were, however, largely independent of caspases and of the proapoptotic Bcl-2 proteins Bax and Bak, suggesting that sinecatechins induce also non-apoptotic, alternative cell death pathways, in addition to apoptosis. Reactive oxygen specie...
BMC Complementary and Alternative Medicine, 2013
Background: Centratherum anthelminticum (L.) Kuntze (scientific synonyms: Vernonia anthelmintica; black cumin) is one of the ingredients of an Ayurvedic preparation, called “Kayakalp”, commonly applied to treat skin disorders in India and Southeast Asia. Despite its well known anti-inflammatory property on skin diseases, the anti-cancer effect of C. anthelminticum seeds on skin cancer is less documented. The present study aims to investigate the anti-cancer effect of Centratherum anthelminticum (L.) seeds chloroform fraction (CACF) on human melanoma cells and to elucidate the molecular mechanism involved. Methods: A chloroform fraction was extracted from C. anthelminticum (CACF). Bioactive compounds of the CACF were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Human melanoma cell line A375 was treated with CACF in vitro. Effects of CACF on growth inhibition, morphology, stress and survival of the cell were examined with MTT, high content screening (HSC) array scan and flow cytometry analyses. Involvement of intrinsic or extrinsic pathways in the CACF-induced A375 cell death mechanism was examined using a caspase luminescence assay. The results were further verified with different caspase inhibitors. In addition, Western blot analysis was performed to elucidate the changes in apoptosis-associated molecules. Finally, the effect of CACF on the NF-κB nuclear translocation ability was assayed. Results: The MTT assay showed that CACF dose-dependently inhibited cell growth of A375, while exerted less cytotoxic effect on normal primary epithelial melanocytes. We demonstrated that CACF induced cell growth inhibition through apoptosis, as evidenced by cell shrinkage, increased annexin V staining and formation of membrane blebs. CACF treatment also resulted in higher reactive oxygen species (ROS) production and lower Bcl-2 expression, leading to decrease mitochondrial membrane potential (MMP). Disruption of the MMP facilitated the release of mitochondrial cytochrome c, which activates caspase-9 and downstream caspase-3/7, resulting in DNA fragmentation and up-regulation of p53 in melanoma cells. Moreover, CACF prevented TNF-α-induced NF-κB nuclear translocation, which further committed A375 cells toward apoptosis. Conclusions: Together, our findings suggest CACF as a potential therapeutic agent against human melanoma malignancy.
Herbal medicine as inducers of apoptosis in cancer treatment
Cancer is uncontrolled growth of abnormal cells in the body. Nowadays, cancer is considered as a human tragedy and one of the most prevalent diseases in the wide, and its mortality resulting from cancer is being increased. It seems necessary to identify new strategies to prevent and treat such a deadly disease. Control survival and death of cancerous cell are important strategies in the management and therapy of cancer. Anticancer agents should kill the cancerous cell with the minimal side effect on normal cells that is possible through the induction of apoptosis. Apoptosis is known as programmed cell death in both normal and damaged tissues. This process includes some morphologically changes in cells such as rapid condensation and budding of the cell, formation of membrane-enclosed apoptotic bodies with well-preserved organelles. Induction of apoptosis is one of the most important markers of cytotoxic antitumor agents. Some natural compounds including plants induce apoptotic pathways that are blocked in cancer cells through various mechanisms in cancer cells. Multiple surveys reported that people with cancer commonly use herbs or herbal products. Vinca Alkaloids, Texans, podo phyllotoxin, Camptothecins have been clinically used as Plant derived anticancer agents. The present review summarizes the literature published so far regarding herbal medicine used as inducers of apoptosis in cancer.
Chemico-biological Interactions, 2008
An essential oil from a lemon grass variety of Cymbopogon flexuosus (CFO) and its major chemical constituent sesquiterpene isointermedeol (ISO) were investigated for their ability to induce apoptosis in human leukaemia HL-60 cells because dysregulation of apoptosis is the hallmark of cancer cells. CFO and ISO inhibited cell proliferation with 48 h IC50 of ∼30 and 20 g/ml, respectively. Both induced concentration dependent strong and early apoptosis as measured by various end-points, e.g. annexinV binding, DNA laddering, apoptotic bodies formation and an increase in hypo diploid sub-G0 DNA content during the early 6 h period of study. This could be because of early surge in ROS formation with concurrent loss of mitochondrial membrane potential observed. Both CFO and ISO activated apical death receptors TNFR1, DR4 and caspase-8 activity. Simultaneously, both increased the expression of mitochondrial cytochrome c protein with its concomitant release to cytosol leading to caspase-9 activation, suggesting thereby the involvement of both the intrinsic and extrinsic pathways of apoptosis. Further, Bax translocation, and decrease in nuclear NF-B expression predict multi-target effects of the essential oil and ISO while both appeared to follow similar signaling apoptosis pathways. The easy and abundant availability of the oil combined with its suggested mechanism of cytotoxicity make CFO highly useful in the development of anti-cancer therapeutics.
Food and Chemical Toxicology, 2013
We have isolated an essential oil from Monarda citriodora (MC) and characterized its 22 chemical constituents with thymol (82%), carvacrol (4.82%), b-myrcene (3.45%), terpinen-4-ol (2.78%) and p-cymene (1.53%) representing the major constituents. We have reported for the first time the chemotherapeutic potential of MC in human promyelocytic leukemia HL-60 cells by means of apoptosis and disruption of the PI3K/AKT/mTOR signaling cascade. MC and its major constituent, thymol, inhibit the cell proliferation in different types of cancer cell lines like HL-60, MCF-7, PC-3, A-549 and MDAMB-231. MC was found to be more cytotoxic than thymol in HL-60 cells with an IC 50 value of 22 lg/ml versus 45 lg/ml for thymol. Both MC and thymol induce apoptosis in HL-60 cells, which is evident by Hoechst staining, cell cycle analysis and immuno-expression of Bcl-xL, caspase-3,-8,-9 and PARP-1 cleavage. Both induce apoptosis by extrinsic and intrinsic apoptotic pathways that were confirmed by enhanced expression of death receptors (TNF-R1, Fas), caspase-9, loss of mitochondrial membrane potential and regression of Bcl-2/ Bax ratio. Interestingly, both MC and thymol inhibit the downstream and upstream signaling of PI3K/ AKT/mTOR pathway. The degree of apoptosis induction and disruption of the PI3K signaling cascade by MC was significantly higher when compared to thymol.
Isoalantolactone Inhibits UM-SCC-10A Cell Growth via Cell Cycle Arrest and Apoptosis Induction
PLoS ONE, 2013
Isoalantolactone is a sesquiterpene lactone compound isolated from the roots of Inula helenium L. Previous studies have demonstrated that isoalantolactone possesses antifungal, anti-bacterial, anti-helminthic and anti-proliferative properties in a variety of cells, but there are no studies concerning its effects on head and neck squamous cell carcinoma (HNSCC). In the present study, an MTT assay demonstrated that isoalantolactone has anti-proliferative activity against the HNSCC cell line (UM-SCC-10A). Immunostaining identified that this compound induced UM-SCC-10A cell apoptosis but not necrosis. To explain the molecular mechanisms underlying its effects, flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of cyclin D. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to upregulation of pro-apoptotic protein expression (Bax), down-regulation of anti-apoptotic protein expression (Bcl-2), mitochondrial release of cytochrome c (Cyto c), reduction of mitochondrial membrane potential (MMP) and activation of caspase-3 (Casp-3). Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Together, our findings suggest that isoalantolactone induced caspase-dependent apoptosis via a mitochondrial pathway and was associated with cell cycle arrest in the G1 phase in UM-SCC-10A cells. Therefore, isoalantolactone may become a potential drug for treating HNSCC.