Bioenergetics and Life's Origins (original) (raw)

Abstract

sparkles

AI

Bioenergetics plays a critical role in understanding the origins of life, yet it has been overlooked in much of the research. This article discusses the energy sources accessible to primitive protocells that could drive primitive metabolism and polymer synthesis essential for life. The work emphasizes the necessity of activated monomers for polymerization and explores potential prebiotic energy sources that may have been harnessed before the emergence of modern cellular processes.

Figures (1)

Figure 2. Possible pathways for synthetic prebiotic reactions. See text for discussion.

Figure 2. Possible pathways for synthetic prebiotic reactions. See text for discussion.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (84)

  1. Baltscheffsky H. 1996. Origin and evolution of biological energy conversion. New York: Wiley VCH.
  2. Benner SA, Kim H-J, Kim M-J, Ricardo A. 2010. Planetary organic chemistry and the origins of Biomolecules. Cold Spring Harb Perspect Biol 2: a003467.
  3. Bernal JD. 1951. The physical basis of life. London: Routledge and Kegan Paul.
  4. Brandes JA, Boctor NZ, Cody GD, Cooper BA, Hazen RM, Yoder HS. 1998. Abiotic nitrogen reduction on the early Earth. Nature 395: 365 -336.
  5. Chen IA, Szostak JW. 2004. A kinetic study of the growth of fatty acid vesicles. Biophys J 87: 988-998.
  6. Chyba CF, Sagan C. 1992. Endogenous production, exoge- nous delivery and impact-shock synthesis of organic molecules: An inventory for the origin of life. Nature 355: 125-113.
  7. Chyba CF, Thomas PJ, Brookshaw, Sagan C. 1990. Cometary delivery of organic molecules to the early Earth. Science 249: 366-373.
  8. Cody GD. 2004. Transition metal sulfides and the origin of metabolism. Ann Rev Earth Planetary Sci 32: 569-599.
  9. Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A, Yoder HS. 2000. Primordial carbonylated iron-sulfur compounds and synthesis of pyruvate. Science 289: 1337-1340.
  10. Deamer DW. 1991. Polycyclic aromatic hydrocarbons: Primitive pigment systems in the prebiotic environment. Adv Space Res 12: 183-189.
  11. Deamer DW. 1997. The first living systems: A bioenergetic perspective. Microbiol Mol Biol Rev. 61: 239 -262.
  12. Deamer DW, Harang-Mahon E, Bosco G. 1994. Self- assembly and function of primitive membrane structures. In: Early life on Earth. Nobel Symposium No. 84. Bengston S. ed.
  13. Deamer DW, Leonard R, Tardieu A, Branton D. 1970. Lamellar and hexagonal lipid phases visualized by freeze- etching. Biochim Biophys Acta 219: 47-60.
  14. DeDuve C. 1991. Blueprint for a cell: The nature and origin of life. New York: Neil Patterson Publishers.
  15. DeDuve C. 2005. Singularities: Landmarks on the pathway of life. Cambridge University Press.
  16. Ferris JP. 1999. Prebiotic synthesis on minerals: Bridging the prebiotic and RNA worlds. Biol Bull 196: 311 -314.
  17. Ferris J. 2002. Montmorillonite catalysis of 30-50 mer oligonucleotides: Laboratory demonstration of potential steps in the origin of the RNA world. Orig Life Evol Biospheres 32: 311 -332.
  18. Ferris JP, Hill AR, Liu R, Orgel LE. 1996. Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381: 59.
  19. Fox SW, Harada K. 1958. Thermal copolymerization of amino acids to a product resembling protein. Science 128: 1214.
  20. Gottschalk G. 1986. Bacterial metabolism. New York: Springer-Verlag, New York, pp. 1 -11, 210 -317.
  21. Gaidos EJ, Nealson KH, Kirschvink JL. 1999. Life in ice-covered oceans. Science 284: 1631-1633.
  22. Hanczyc MM, Fujikawa SM, Szostak JW. 2003. Experi- mental models of primitive cellular compartments: Encapsulation, growth, and division. Science 302: 618-622.
  23. Hargreaves WR, Deamer DW. 1978. Liposomes from ionic, single-chain amphiphiles. Biochemistry 17: 3759-3768.
  24. Huber C, Wa ¨chtersha ¨user G. 1997. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial con- ditions. Science 276: 245-247.
  25. Huber C, Wa ¨chtersha ¨user G. 1998. Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: Implications for the origin of life. Science 281: 670-672.
  26. Huber C, Eisenreich W, Hecht S, Wa ¨chtersha ¨user G. 2003. A possible primordial peptide cycle. Science 301: 938-940.
  27. Kanavarioti A, Monnard P-A, Deamer DW. 2001. Eutectic phases in ice facilitate nonenzymatic nucleic acid synthe- sis. Astrobiology 1: 271 -281.
  28. Knauth LP, Lowe DR. 2003. High Archean climatic temper- ature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. GSA Bulletin 115: 566-580.
  29. Koch A. 1985. Primeval cells: Possible energy-generating and cell-division mechanisms. J Mol Evol 21: 270 -77.
  30. Koch AL, Schmidt TM. 1991. The first cellular bioenergetic process: Primitive generation of a proton motive force. J Mol Evo. 33: 297-304.
  31. Kritsky MS, Telegina TA. 2004. Role of nucleotide-like coe- nzymes in primitive evolution. In Cellular origin, life in extreme environments and astrobiology. J. Seckbach, Ed. Springer Netherlands.
  32. Leman L, Orgel L, Ghadiri MR. 2004. Carbonyl sulfi- de-mediated prebiotic formation of peptides. Science 306: 283-286.
  33. Leman LJ, Orgel LE, Ghadiri MR. 2006. Amino acid de- pendent formation of phoshate anhydrides in water mediated by carbonyl sulfide. J Am Chem Soc 128: 20-21.
  34. Lohrmann R, Bridson PK, Orgel LE. 1980. Efficient metal- ion catalyzed template-directed oligonucleotide synthe- sis. Science 208: 1464-1465.
  35. Mansy SS. 2010. Membrane transport in primitive cells. Cold Spring Harb Perspect Biol 2: a002188.
  36. Mansy SS, Szostak JW. 2008. Thermostability of model protocell membranes. Proc Natl Acad Sci 105: 13351-13355.
  37. Maurel M-C, Orgel LE. 2000. Oligomerization of a-thioglutamic acid. Orig Life Evol Biospheres 30: 423 -430.
  38. McCollom TM, Ritter G, Simoneit BRT. 1999. Lipid synthe- sis under hydrothermal conditions by Fischer-Tropsch- type reactions. Orig Life Evol Biospheres 29: 153-166.
  39. Miller SL. 1953. Production of amino acids under possible primitive Earth conditions. Science 117: 528 -529.
  40. Miller AL, Urey HC. 1959. Organic compound synthesis on the primitive Earth. Science 130: 245-51.
  41. Mitchell P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mech- anism. Nature 191: 144-148.
  42. Mitchell P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41: 445-501.
  43. Miyakawa S, Cleaves HJ, Miller SL. 2002. The cold origin of life: Implications based on pyrimidines and purines pruduced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32: 209-218.
  44. Monnard PA, Apel CL, Kanavarioti A, Deamer DW. 2002. Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: Implications for a prebiotic aqueous medium. Astrobiology 2: 139-152.
  45. Nichols JW, Deamer DW. 1980. Net proton-hydroxide permeability of large unilamellar liposomes measured by an acid-base titration technique. Proc Natl Acad Sci 77: 2038-2042.
  46. Nooner DW, Oro J. 1987. Synthesis of fatty acids by a closed system Fischer-Tropsch process. Adv Chem 178: 159 -171.
  47. Orgel L. 2004. Prebiotic adenine revisited: Eutectics and photochemistry. Orig Life Evol Biospheres 34: 361 -369.
  48. Oro J. 1961. Mechanism of synthesis of adenine from hydro- gen cyanide under possible primitive Earth conditions. Nature 191: 1193-1194.
  49. Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW. 1996. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a func- tion of membrane thickness. Biophys J 70: 339-348.
  50. Pinto JP, Gladstone GR, Yung YL. 1980. Photochemical production of formaldehyde in Earth's primitive atmos- phere. Science 210: 183-185. Bioenergetics and Life's Origins Cite this article as Cold Spring Harb Perspect Biol 2010;2:a004929
  51. Pizzarello S, Shock E. 2010. The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. Cold Spring Harb Perspect Biol 2: a002105.
  52. Pizzarello S, Weber AL. 2010. Stereoselective syntheses of pentose sugars under realistic prebiotic conditions. Orig Life Evol Biosph (in press).
  53. Powner MW, Gerland B, Sutherland JD. 2009. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459: 239-242.
  54. Prabahar KJ, Ferris JP. 1997. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3',5'-linked oligoadenylates on montmoril- lonite: possible phosphate-activating groups for the prebiotic synthesis of RNA. J Am Chem Soc 119: 4330-4337.
  55. Rajamani S, Vlassov A, Benner S, Coombs A, Olasagasti F, Deamer D. 2008. Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig Life Evol Biosphere 38: 57-74.
  56. Rasmussen RA, Khalil MAK, Dalluge RW, Penkett SA, Jones B. 1982. Carbonyl sulfide and carbon disulfide from the eruptions of Mount St. Helens. Science 215: 665-667.
  57. Reiss-Husson F, Luzzati V. 1967. Phase transitions in lipids in relation to the structure of membranes. Adv Biol Med Phys 11: 87-107.
  58. Rushdi AI, Simoneit BRT. 2001. Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100 to 4008C. Orig Life Evol Biosphere 31: 103 -118.
  59. Schwartz AW, de Graaf RM. 1993. The prebiotic synthesis of carbohydrates: A reassessment. J Mol Evolution 35: 101-106.
  60. Shock E. 1990. Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig Life Evol Biospheres 20: 331 -367.
  61. Simoneit BRT, Rushdi AI, Deamer DW. 2006. Abiotic formation of acylglycerols under simulated hydrothermal conditions and self-assembly properties of such lipid products. Adv Space Res 11: 1649-1656.
  62. Sleep NH, Zahnle K, Kasting JF, Morowitz HJ. 1989. Anni- hilation of ecosystems by large asteroid impacts on the early Earth. Nature 342: 139-142.
  63. Stouthamer AH. 1977. Energetic aspects of the growth of microorganisms. In Microbial Energetics. BA Haddock and WA Hamilton, Eds. Cambridge University Press Lon- don. pp. 285-315.
  64. Stribling R, Miller SL. 1987. Energy yields for hydrogen cyanide and formaldehyde synthesis: The HCN and ami- no acid concentration in the primitive ocean. Orig Life Evol Biospheres 17: 261 -273.
  65. Summers DR, Khare B. 2007. Nitrogen fixation on early Mars and other terrestrial planets: Experimental demon- stration of abiotic fixation reactions to nitrite and nitrate. Astrobiology 7: 333-341.
  66. Sutherland JD. 2010. Ribonucleotides. Cold Spring Harb Perspect Biol 2: a005439.
  67. Szostak JW, Bartel DP, Luisi PL. 2001. Synthesizing life. Nature 409: 387 -390.
  68. Tazuke S, Kazama S, Kitamura N. 1986. Reductive photo- carboxylation of aromatic hydrocarbons. J Org Chem 51: 4548-4553.
  69. Usher DA. 1977. Early chemical evolution of nucleic acids: a theoretical model. Science 196: 311-313.
  70. Usher DA, McHale AH. 1976. Nonenzymic joining of oligoadenylates on a polyuridylic acid template. Science 192: 53-54.
  71. Verlander MS, Orgel LE. 1974. Analysis of high molecular weight material from the polymerization of adenosine cyclic 2 0 , 3 0 -phosphate. J Mol Evol 3: 115-120.
  72. Wachtershauser G. 1988. Before enzyme and template: Theory of surface metabolism. Microbiol Rev 52: 452 -484.
  73. Walde P, Wick R, Fresta M, Mangone A, Luisi PL. 1994. Autopoietic self-reproduction of fatty acid vesicles. J Am Chem Soc 116: 11649-11654.
  74. Weber AL. 1998. Prebiotic amino acid thioester synthesis: Thiol-dependent amino acid synthesis from formose substrates (formaldehyde and glycolaldehyde) and ammonia. Orig Life Evol Biospheres 28: 259-270.
  75. Weber AL. 1984. Nonenzymatic formation of "energy-rich" lactoyl and glyceroyl thioesters from glyceraldehyde and a thiol. J Mol Evol 20: 157-166.
  76. Weber AL. 2000. Sugars as the optimal biosynthetic carbon substrate of aqueous life throughout the universe. Orig Life Evol Biospheres 30: 33-43.
  77. Weber AL. 2001. The Sugar Model: Catalysis by amines and amino acid products. Orig Life Evol Biospheres 31: 71-86.
  78. Weber AL. 2004. Kinetics of organic transformations under mild aqueous conditions: Implications for the origin of life and its metabolism. Orig Life Evol Biosphere 34: 473 -495.
  79. Weber AL. 2005. Growth of organic microspherules in sugar-ammonia reactions. Orig Life Evol Biospheres 35: 523 -536.
  80. Weber AL. 2007. The Sugar Model: Autocatalytic activity of the triose-ammonia. Orig Life Evol Biospheres 37: 105 -111.
  81. Weber AL. 2008. Sugar-driven prebiotic synthesis of 3,5(6)-dimethylpyrazin-2-one: A possible nucleobase of a primitive replication process. Orig Life Evol Biospheres 38: 279-292.
  82. Westheimer FH. 1987. Why nature chose phosphates. Science 235: 1173-1178.
  83. Wieland T, Bokelmann E, Bauer L, Lang HU. 1953. Polypep- tide syntheses. 8. Formation of sulfur containing peptides by the intramolecular Liebigs. Ann Chem 582: 129 -149.
  84. Zepik HH, Rajamani S, Maurel MC, Deamer D. 2007. Oligomerization of thioglutamic acid: encapsulated reactions and lipid catalysis. Orig Life Evol Biospheres 37: 495-505.