A role for the Clostridium perfringens β2 toxin in bovine enterotoxaemia? (original) (raw)
Related papers
Bovine necro-haemorrhagic enteritis is an economically important disease caused by Clostridium perfringens type A strains. The disease mainly affects calves under intensive rearing conditions and is characterized by sudden death associated with small intestinal haemorrhage, necrosis and mucosal neutrophil infiltration. The common assumption that, when causing intestinal disease, C. perfringens relies upon specific, plasmid-encoded toxins, was recently challenged by the finding that alpha toxin, which is produced by all C. perfringens strains, is essential for necro-haemor-rhagic enteritis. In addition to alpha toxin, other C. perfringens toxins and/or enzymes might contribute to the patho-genesis of necro-haemorrhagic enteritis. These additional virulence factors might contribute to breakdown of the protective mucus layer during initial stage of pathogenesis, after which alpha toxin, either or not in synergy with other toxins such as perfringolysin O, can act on the mucosal tissue. Furthermore, alpha toxin alone does not cause intestinal necrosis, indicating that other virulence factors might be needed to cause the extensive tissue necrosis observed in necro-haemorrhagic enteritis. This review summarizes recent research that has increased our understanding of the pathogenesis of bovine necro-haemorrhagic enteritis and provides information that is indispensable for the development of novel control strategies, including vaccines.
Clostridium Perfringens Toxins Involved in Mammalian Veterinary Diseases
The Open Toxinology Journal, 2013
Clostridium perfringens is a gram-positive anaerobic rod that is classified into 5 toxinotypes (A, B, C, D, and E) according to the production of 4 major toxins, namely alpha (CPA), beta (CPB), epsilon (ETX) and iota (ITX). However, this microorganism can produce up to 16 toxins in various combinations, including lethal toxins such as perfringolysin O (PFO), enterotoxin (CPE), and beta2 toxin (CPB2). Most diseases caused by this microorganism are mediated by one or more of these toxins. The role of CPA in intestinal disease of mammals is controversial and poorly documented, but there is no doubt that this toxin is essential in the production of gas gangrene of humans and several animal species. CPB produced by C. perfringens types B and C is responsible for necrotizing enteritis and enterotoxemia mainly in neonatal individuals of several animal species. ETX produced by C. perfringens type D is responsible for clinical signs and lesions of enterotoxemia, a predominantly neurological disease of sheep and goats. The role of ITX in disease of animals is poorly understood, although it is usually assumed that the pathogenesis of intestinal diseases produced by C. perfringens type E is mediated by this toxin. CPB2, a necrotizing and lethal toxin that can be produced by all types of C. perfringens, has been blamed for disease in many animal species, but little information is currently available to sustain or rule out this claim. CPE is an important virulence factor for C. perfringens type A gastrointestinal disease in humans and dogs; however, the data implicating CPE in other animal diseases remains ambiguous. PFO does not seem to play a direct role as the main virulence factor for animal diseases, but it may have a synergistic role with CPA-mediated gangrene and ETX-mediated enterotoxemia. The recent improvement of animal models for C. perfringens infection and the use of toxin gene knock-out mutants have demonstrated the specific pathogenic role of several toxins of C. perfringens in animal disease. These research tools are helping us to establish the role of each C. perfringens toxin in animal disease, to investigate the in vivo mechanism of action of these toxins, and to develop more effective vaccines against diseases produced by these microorganisms.
Journal of Veterinary Diagnostic Investigation, 2008
Enterotoxemia caused by Clostridium perfringens type D in sheep is believed to result from the action of epsilon toxin (ETX). However, the sole role of ETX in the intestinal changes of the acute and chronic forms of enterotoxemia in goats remains controversial, and the synergistic action of other C. perfringens toxins has been suggested previously. The current study examined 2 goats that were found dead without premonitory clinical signs. Gross lesions at necropsy consisted of multifocal fibrinonecrotic enterocolitis, edematous lungs, and excess pleural fluid. Histologically, there were multifocal fibrinonecrotic and ulcerative ileitis and colitis, edema of the colonic serosa, and proteinaceous interstitial edema of the lungs. Clostridium perfringens type D carrying the genes for enterotoxin (CPE) and beta2 toxin (CPB2) was cultured from intestinal content and feces of 1 of 2 goats, while C. perfringens type D CPB2–positive was isolated from the other animal. When multiple colonies ...
Veterinary Pathology, 2003
Clostridia-associated intestinal disease in horses was generally reported to be due to infection with Clostridium perfringens type A, which harbors the cpa-encoded α-toxin. A recent study demonstrated a high incidence of β2-toxigenic C. perfringens in horses suffering or dying from typhlocolitis, suggesting that this novel type of C. perfringens might play an important role in typhlocolitis and possibly other equine intestinal diseases. A retrospective study was conducted to assess the presence of the β2-toxin in tissues of the equine gastrointestinal tract. Monospecific polyclonal antibodies against recombinant β2-toxin were produced in rabbits and used to demonstrate the β2-toxin in sections of the gastrointestinal tract by immunohistochemical methods. Sections from 69 horses were stained and β2-toxin was observed immunohistochemically in 40 animals. Sections from the stomach, small intestine, and large intestine were positive. Immunopositivity for β2-toxin was significantly assoc...
BMC Veterinary Research, 2016
Bovine necrohemorrhagic enteritis is caused by Clostridium perfringens type A. Due to the rapid progress and fatal outcome of the disease, vaccination would be of high value. In this study, C. perfringens toxins, either as native toxins or after formaldehyde inactivation, were evaluated as possible vaccine antigens. We determined whether antisera raised in calves against these toxins were able to protect against C. perfringens challenge in an intestinal loop model for bovine necrohemorrhagic enteritis. Alpha toxin and perfringolysin O were identified as the most immunogenic proteins in the vaccine preparations. All vaccines evoked a high antibody response against the causative toxins, alpha toxin and perfringolysin O, as detected by ELISA. All antibodies were able to inhibit the activity of alpha toxin and perfringolysin O in vitro. However, the antibodies raised against the native toxins were more inhibitory to the C. perfringens-induced cytotoxicity (as tested on bovine endothelial cells) and only these antibodies protected against C. perfringens challenge in the intestinal loop model. Although immunization of calves with both native and formaldehyde inactivated toxins resulted in high antibody titers against alpha toxin and perfringolysin O, only antibodies raised against native toxins protect against C. perfringens challenge in an intestinal loop model for bovine necrohemorrhagic enteritis.
Veterinary Research, 2013
Bovine necrohemorrhagic enteritis is a major cause of mortality in veal calves. Clostridium perfringens is considered as the causative agent, but there has been controversy on the toxins responsible for the disease. Recently, it has been demonstrated that a variety of C. perfringens type A strains can induce necrohemorrhagic lesions in a calf intestinal loop assay. These results put forward alpha toxin and perfringolysin as potential causative toxins, since both are produced by all C. perfringens type A strains. The importance of perfringolysin in the pathogenesis of bovine necrohemorrhagic enteritis has not been studied before. Therefore, the objective of the current study was to evaluate the role of perfringolysin in the development of necrohemorrhagic enteritis lesions in calves and its synergism with alpha toxin. A perfringolysin-deficient mutant, an alpha toxin-deficient mutant and a perfringolysin alpha toxin double mutant were less able to induce necrosis in a calf intestinal loop assay as compared to the wild-type strain. Only complementation with both toxins could restore the activity to that of the wild-type. In addition, perfringolysin and alpha toxin had a synergistic cytotoxic effect on bovine endothelial cells. This endothelial cell damage potentially explains why capillary hemorrhages are an initial step in the development of bovine necrohemorrhagic enteritis. Taken together, our results show that perfringolysin acts synergistically with alpha toxin in the development of necrohemorrhagic enteritis in a calf intestinal loop model and we hypothesize that both toxins act by targeting the endothelial cells.
PloS one, 2015
A role for type A Clostridium perfringens in acute hemorrhagic and necrotizing gastroenteritis in dogs and in necrotizing enterocolitis of neonatal foals has long been suspected but incompletely characterized. The supernatants of an isolate made from a dog and from a foal that died from these diseases were both found to be highly cytotoxic for an equine ovarian (EO) cell line. Partial genome sequencing of the canine isolate revealed three novel putative toxin genes encoding proteins related to the pore-forming Leukocidin/Hemolysin Superfamily; these were designated netE, netF, and netG. netE and netF were located on one large conjugative plasmid, and netG was located with a cpe enterotoxin gene on a second large conjugative plasmid. Mutation and complementation showed that only netF was associated with the cytotoxicity. Although netE and netG were not associated with cytotoxicity, immunoblotting with specific antisera showed these proteins to be expressed in vitro. There was a highl...
Protein Expression and Purification, 2007
Overgrowth of Clostridium perfringens clones with production of one or more of its toxin(s) results in diverse digestive and systemic pathologies in human and animals, such as cattle enterotoxaemia. The so-called beta2 toxin (CPB2) is the most recently described major toxin produced by C. perfringens. In this study, the cpb2 ORF (cpb2FM) from a cattle C. perfringens-associated enterotoxaemia was cloned and sequenced. The cpb2FM and its deduced nucleotide sequence clearly corresponded to the cpb2 allele considered as ''consensus'' and not to ''atypical'' allele, despite its ''non-porcine'' origin. Expression assays of the recombinant toxin CPB2FM were performed in Escherichia coli and Bacillus subtilis with the expression vector pBLTS72, and by genomic integration by double recombination in B. subtilis. Highest level of production was obtained with the expression vector in B. subtilis 168 strain. The recombinant CPB2FM protein was purified and a specific rabbit polyclonal antiserum was produced. Polyclonal antibodies could detect CPB2 production in supernatants of C. perfringens from enterotoxaemic cattle.
2008
and pygmy hog (Sus salvanius) at the Assam State Zoo, Guwahati, Assam, India. An eight year old female elephant and two and half year old female pygmy hog developed haemorrhagic enteritis of unknown cause maintained at the zoo died within four days. Bacteriological investigation revealed that the causative agent Clostridium perfringens was associated with the disease. Erythromycin, clindamycin and metronidazole were effective, however, ampicillin or penicillin G was more effective and probably the drug of choice for C. perfringens associated haemorrhagic enteritis. Isolates derived from elephant harboured four plasmids , while that from pygmy hog carried two plasmids (42.8 and 51.9 kb). PCR analysis of C. perfringens isolates revealed presence of alpha toxin gene (cpa) and beta2 toxin gene (cpb2). None of the isolates were positive for beta, epsilon, iota and enterotoxin genes. The sequence analysis of partial cpa gene showed 98.6 to 100% homology among the isolates studied. The study confirmed the involvement of beta2 toxin producing C. perfringens type A associated with the haemorrhagic enteritis.