Effect of Transgenesis on mRNA and miRNA Profiles in Cucumber Fruits Expressing Thaumatin II (original) (raw)
Related papers
International Journal of Molecular Sciences
The role of miRNAs in connection with the phenomenon of somaclonal variation, which occurs during plant in vitro culture, remains uncertain. This study aims to investigate the possible role of miRNAs in multi-omics regulatory pathways in cucumber somaclonal lines. For this purpose, we performed sRNA sequencing (sRNA-seq) from cucumber fruit samples identified 8, 10 and 44 miRNAs that are differentially expressed between somaclones (S1, S2, S3 lines) and the reference B10 line of Cucumis sativus. For miRNA identification, we use ShortStack software designed to filter miRNAs from sRNAs according to specific program criteria. The identification of predicted in-silico targets revealed 2,886 mRNAs encoded by 644 genes. The functional annotation of miRNA’s target genes and gene ontology classification revealed their association with metabolic processes, response to stress, multicellular organism development, biosynthetic process and catalytic activity. We checked with bioinformatic analys...
Identification of microRNA targets in tomato fruit
2013
MicroRNAs (miRNAs) play important roles in plant development through regulation of gene expression by mRNA degradation or translational inhibition. Despite the fact that tomato (Solanum lycopersicum) is the model system for studying fleshy fruit development and ripening, only a few experimentally proven miRNA targets are known, and the role of miRNA action in these processes remains largely unknown. Here, by using parallel analysis of RNA ends (PARE) for global identification of miRNA targets and comparing four different stages of tomato fruit development, a total of 119 target genes of miRNAs were identified. Of these, 106 appeared to be new targets. A large part of the identified targets (56) coded for transcription factors. Auxin response factors, as well as two known ripening regulators, COLORLESS NON-RIPENING (CNR) and APETALA2a (SlAP2a), with developmentally regulated degradation patterns were identified. The levels of the intact messenger of both CNR and AP2a are actively modulated during ripening, by miR156/157 and miR172, respectively. Additionally, two TAS3-mRNA loci were identified as targets of miR390. Other targets such as ARGONAUTE 1 (AGO1), shown to be involved in miRNA biogenesis in other plant species, were identified, which suggests a feedback loop regulation of this process. In this study, it is shown that miRNA-guided cleavage of mRNAs is likely to play an important role in tomato fruit development and ripening.
Haya: The Saudi Journal of Life Sciences
Crops are very important in order to accommodate world population for food as well as industrial purposes. MiRNA (micro-RNA) have been considered as an important and crucial factor for manipulation of crops to make them more productive and resistant against harsh environmental stressed conditions. Now, these non-coding special sequences have been used successfully for gene-expression and regulation such as gene integration, slicing, signal transduction, pre and post translational modification, boost up metabolic pathways, enhancement of crop growth and developments and much more traits which is significant contribution in genetic engineering technologies for crop modifications. Genomic expression factors have been modulated through unique-miRNAs sequence which takes up toward the next generation specific targets that would have been adapted under biotechnological mechanisms and then these technologies could be used for improving the agronomic traits of various crops further down collection of high productive results. Significant strategies have pointed out to overcome the drawbacks during crop-manipulation. In this review, work for diversified and recently identified sequences of micro-RNA is studied; and production of valuable crops in order to have better agronomic properties to fulfill the requirements of food and industry with significant sustainability under stressed conditions. Genetic regulation as well as expression through miRNAs in genetic engineering will facilitate better for crop modification with quality and would be considered as positive step toward improving the economy of country.
Profiling microRNAs and their targets in an important fleshy fruit: Tomato (Solanum lycopersicum)
Gene, 2014
Tomato (Solanum lycopersicum) is an important and the most useful plant based diet. It is widely used for its antioxidant property. Presently, only two digits, tomato microRNAs (miRNAs) are reported in miRBase: a miRNA database. This study is aimed to profile and characterize more miRNAs and their targets in tomato. A comprehensive comparative genomic approach is applied and a total of 109 new miRNAs belonging to 106 families are identified and characterized from the tomato expressed sequence tags (ESTs). All these potential miRNAs are profiled for the first time in tomato. The profiled miRNAs are also observed with stable stem-loop structures (Precursor-miRNAs), whose length ranges from 45to 329 nucleotides (nt) with an average of 125 nt. The mature miRNAs are found in the stem of pre-miRNAs and their length ranges from 19 to 24 nt with an average of 21 nt. Furthermore, twelve miRNAs are randomly selected and experimentally validated through RT-PCR. A total of 406 putative targets are also predicted for the newly 109 tomato miRNAs. These targets are involved in structural protein, metabolism, transcription factor, growth & development, stress related, signaling pathways, storage proteins and other vital processes. Some important proteins like; 9-cisepoxycarotenoid dioxygenase (NCED), transcription factor MYB, ATP-binding cassette transporters, terpen synthase, 14-3-3 and TIR-NBS proteins are also predicted as putative targets for tomato miRNAs. These findings improve a baseline data of miRNAs and their targets in tomato. This baseline data can be utilized to fine tune this important fleshy fruit for nutritional & antioxidant properties and also under biotic & abiotic stresses.
Journal of Experimental Botany, 2013
MicroRNAs (miRNAs) play important roles in plant development through regulation of gene expression by mRNA degradation or translational inhibition. Despite the fact that tomato (Solanum lycopersicum) is the model system for studying fleshy fruit development and ripening, only a few experimentally proven miRNA targets are known, and the role of miRNA action in these processes remains largely unknown. Here, by using parallel analysis of RNA ends (PARE) for global identification of miRNA targets and comparing four different stages of tomato fruit development, a total of 119 target genes of miRNAs were identified. Of these, 106 appeared to be new targets. A large part of the identified targets (56) coded for transcription factors. Auxin response factors, as well as two known ripening regulators, COLORLESS NON-RIPENING (CNR) and APETALA2a (SlAP2a), with developmentally regulated degradation patterns were identified. The levels of the intact messenger of both CNR and AP2a are actively modulated during ripening, by miR156/157 and miR172, respectively. Additionally, two TAS3-mRNA loci were identified as targets of miR390. Other targets such as ARGONAUTE 1 (AGO1), shown to be involved in miRNA biogenesis in other plant species, were identified, which suggests a feedback loop regulation of this process. In this study, it is shown that miRNA-guided cleavage of mRNAs is likely to play an important role in tomato fruit development and ripening.
Agronomy
Several miRNAs are conserved in different plant families, but their abundance and target genes vary between species, organs, and stages of development. Target genes of miRNAs are mostly transcription factors, involved in the control of many plant developmental processes, including fruit development. MiR164 is a conserved miRNA, highly expressed in fruits, and is validated to target a subset of genes of the NAC-domain transcription factor gene family. The objective of this work was to analyze the phenotypic effects of the constitutive expression of miR164 during the life cycle of Arabidopsis and tomato. MiR164 overexpression (164-OE) lines for Arabidopsis and tomato were generated and analyzed during plant development. The constitutive miR164 expression showed that miR164 affected the morphology of Arabidopsis and tomato, and it affected the transition from the vegetative to the reproductive phase in Arabidopsis. Moreover, the miR164 overexpression affected the time required for each developmental stage of tomato fruit. These results suggest that miR164 plays general and specific roles during development in Arabidopsis and tomato, including fruit development, which could be exploited for the improvement of traits of agronomic interest in important species.
BMC Plant Biology, 2020
Background MicroRNAs (miRNAs) are short non-coding RNAs that can influence gene expression via diverse mechanisms. Tomato is a fruit widely consumed for its flavor, culinary attributes, and high nutritional quality. Tomato fruit are climacteric and fleshy, and their ripening is regulated by endogenous and exogenous signals operating through a coordinated genetic network. Much research has been conducted on mechanisms of tomato fruit ripening, but the roles of miRNA-regulated repression/expression of specific regulatory genes are not well documented. Results In this study, we demonstrate that miR172 specifically targets four SlAP2 transcription factor genes in tomato. Among them, SlAP2a was repressed by the overexpression of SlmiR172, manifesting in altered flower morphology, development and accelerated ripening. miR172 over-expression lines specifically repressed SlAP2a, enhancing ethylene biosynthesis, fruit color and additional ripening characteristics. Most previously described r...
Plant signaling & behavior, 2013
Two genotypes of common bean (Phaseolus vulgaris L.) were studied to determine the structural cause of seed abortion in this species. In the non-abortive control (wild-type, cultivar BAT93), the histological analysis revealed a classical pattern of seed development and showed coordinated differentiation of the embryo proper, suspensor, endosperm tissue and seed coat. In contrast, the ethyl methanesulfonate (EMS) mutant (cultivar BAT93) showed disruption in the normal seed development leading to embryo abortion. Aborted embryos from these degenerate seeds showed abnormalities in suspensor and cotyledons at the globular, heart, torpedo and cotyledon stages. Exploring the feasibility of incorporating the available online bioinformatics databases, we identified 22 genes revealing high homology with genes involved in Arabidopsis thaliana embryo development and expressed in common bean immature seeds. The expression patterns of these genes were confirmed by RT-PCR. All genes were highly expressed in seed tissues. To study the expression profiles of isolated genes during Phaseolus embryogenesis, six selected genes were examined by quantitative RT-PCR analysis on the developing embryos of wild-type and EMS mutant plants. All selected genes were expressed differentially at different stages of embryo development. These results could help to improve understanding of the mechanism of common bean embryogenesis.
Background: MicroRNAs (miRNAs), a class of small non-coding endogenous RNAs that regulate gene expression post-transcriptionally, play multiple key roles in plant growth and development and in biotic and abiotic stress response. Knowledge and roles of miRNAs in pomegranate fruit development have not been explored. Results: Pomegranate, which accumulates a large amount of anthocyanins in skin and arils, is valuable to human health, mainly because of its antioxidant properties. In this study, we developed a small RNA library from pooled RNA samples from young seedlings to mature fruits and identified both conserved and pomegranate-specific miRNA from 29,948,480 high-quality reads. For the pool of 15-to 30-nt small RNAs, ~50 % were 24 nt. The miR157 family was the most abundant, followed by miR156, miR166, and miR168, with variants within each family. The base bias at the first position from the 5' end had a strong preference for U for most 18-to 26-nt sRNAs but a preference for A for 18-nt sRNAs. In addition, for all 24-nt sRNAs, the nucleotide U was preferred (97 %) in the first position. Stem-loop RT-qPCR was used to validate the expression of the predominant miRNAs and novel miRNAs in leaves, male and female flowers, and multiple fruit developmental stages; miR156, miR156a, miR159a, miR159b, and miR319b were upregulated during the later stages of fruit development. Higher expression of miR156 in later fruit developmental may positively regulate anthocyanin biosynthesis by reducing SPL transcription factor. Novel miRNAs showed variation in expression among different tissues. These novel miRNAs targeted different transcription factors and hormone related regulators. Gene ontology and KEGG pathway analyses revealed predominant metabolic processes and catalytic activities, important for fruit development. In addition, KEGG pathway analyses revealed the involvement of miRNAs in ascorbate and linolenic acid, starch and sucrose metabolism; RNA transport; plant hormone signaling pathways; and circadian clock.
PLoS ONE, 2013
MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21 nt in length which play important roles in regulating gene expression in plants. Although many miRNA studies have focused on a few model plants, miRNAs and their target genes remain largely unknown in hot pepper (Capsicum annuum), one of the most important crops cultivated worldwide. Here, we employed high-throughput sequencing technology to identify miRNAs in pepper extensively from 10 different libraries, including leaf, stem, root, flower, and six developmental stage fruits. Based on a bioinformatics pipeline, we successfully identified 29 and 35 families of conserved and novel miRNAs, respectively. Northern blot analysis was used to validate further the expression of representative miRNAs and to analyze their tissue-specific or developmental stage-specific expression patterns. Moreover, we computationally predicted miRNA targets, many of which were experimentally confirmed using 59 rapid amplification of cDNA ends analysis. One of the validated novel targets of miR-396 was a domain rearranged methyltransferase, the major de novo methylation enzyme, involved in RNA-directed DNA methylation in plants. This work provides the first reliable draft of the pepper miRNA transcriptome. It offers an expanded picture of pepper miRNAs in relation to other plants, providing a basis for understanding the functional roles of miRNAs in pepper.