WarpNet: Weakly Supervised Matching for Single-View Reconstruction (original) (raw)

Aligned to the Object, Not to the Image: A Unified Pose-Aligned Representation for Fine-Grained Recognition

2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 2019

Dramatic appearance variation due to pose constitutes a great challenge in fine-grained recognition, one which recent methods using attention mechanisms or second-order statistics fail to adequately address. Modern CNNs typically lack an explicit understanding of object pose and are instead confused by entangled pose and appearance. In this paper, we propose a unified object representation built from a hierarchy of pose-aligned regions. Rather than representing an object by regions aligned to image axes, the proposed representation characterizes appearance relative to the object's pose using pose-aligned patches whose features are robust to variations in pose, scale and rotation. We propose an algorithm that performs pose estimation and forms the unified object representation as the concatenation of hierarchical pose-aligned regions features, which is then fed into a classification network. The proposed algorithm surpasses the performance of other approaches, increasing the state-of-the-art by nearly 2% on the widely-used CUB-200 [42] dataset and by more than 8% on the much larger NABirds [41] dataset. The effectiveness of this paradigm relative to competing methods suggests the critical importance of disentangling pose and appearance for continued progress in fine-grained recognition.

Deformable Part Descriptors for Fine-grained Recognition and Attribute Prediction

ICCV, 2013

Recognizing objects in fine-grained domains can be extremely challenging due to the subtle differences between subcategories. Discriminative markings are often highly localized, leading traditional object recognition approaches to struggle with the large pose variation often present in these domains. Pose-normalization seeks to align training exemplars, either piecewise by part or globally for the whole object, effectively factoring out differences in pose and in viewing angle. Prior approaches relied on computationally-expensive filter ensembles for part localization and required extensive supervision. This paper proposes two pose-normalized descriptors based on computationally-efficient deformable part models. The first leverages the semantics inherent in strongly-supervised DPM parts. The second exploits weak semantic annotations to learn cross-component correspondences, computing pose-normalized descriptors from the latent parts of a weakly-supervised DPM. These representations enable pooling across pose and viewpoint, in turn facilitating tasks such as fine-grained recognition and attribute prediction. Experiments conducted on the Caltech-UCSD Birds 200 dataset and Berkeley Human Attribute dataset demonstrate significant improvements over state-of-art algorithms.

POOF: Part-Based One-vs-One Features for Fine-Grained Categorization, Face Verification, and Attribute Estimation

From a set of images in a particular domain, labeled with part locations and class, we present a method to automatically learn a large and diverse set of highly discriminative intermediate features that we call Part-based One-vs-One Features (POOFs). Each of these features specializes in discrimination between two particular classes based on the appearance at a particular part. We demonstrate the particular usefulness of these features for fine-grained visual cat-egorization with new state-of-the-art results on bird species identification using the Caltech UCSD Birds (CUB) dataset and parity with the best existing results in face verification on the Labeled Faces in the Wild (LFW) dataset. Finally, we demonstrate the particular advantage of POOFs when training data is scarce.

Dual-Resolution Correspondence Networks

ArXiv, 2020

We tackle the problem of establishing dense pixel-wise correspondences between a pair of images. In this work, we introduce Dual-Resolution Correspondence Networks (DRC-Net), to obtain pixel-wise correspondences in a coarse-to-fine manner. DRC-Net extracts both coarse- and fine- resolution feature maps. The coarse maps are used to produce a full but coarse 4D correlation tensor, which is then refined by a learnable neighbourhood consensus module. The fine-resolution feature maps are used to obtain the final dense correspondences guided by the refined coarse 4D correlation tensor. The selected coarse-resolution matching scores allow the fine-resolution features to focus only on a limited number of possible matches with high confidence. In this way, DRC-Net dramatically increases matching reliability and localisation accuracy, while avoiding to apply the expensive 4D convolution kernels on fine-resolution feature maps. We comprehensively evaluate our method on large-scale public bench...

Understanding Objects in Detail with Fine-Grained Attributes

2014

We study the problem of understanding objects in detail, intended as recognizing a wide array of fine-grained object attributes. To this end, we introduce a dataset of 7,413 airplanes annotated in detail with parts and their attributes, leveraging images donated by airplane spotters and crowdsourcing both the design and collection of the detailed annotations. We provide a number of insights that should help researchers interested in designing fine-grained datasets for other basic level categories. We show that the collected data can be used to study the relation between part detection and attribute prediction by diagnosing the performance of classifiers that pool information from different parts of an object. We note that the prediction of certain attributes can benefit substantially from accurate part detection. We also show that, differently from previous results in object detection, employing a large number of part templates can improve detection accuracy at the expenses of detection speed. We finally propose a coarse-to-fine approach to speed up detection through a hierarchical cascade algorithm. 1 We already introduced a superset of these aircraft images for FGcomp 2013 [28], but without detailed annotations.

Fine-Grained Categorization by Alignments

IEEE International Conference on Computer Vision, 2013

The aim of this paper is fine-grained categorization without human interaction. Different from prior work, which relies on detectors for specific object parts, we propose to localize distinctive details by roughly aligning the objects using just the overall shape, since implicit to fine-grained categorization is the existence of a super-class shape shared among all classes. The alignments are then used to transfer part annotations from training images to test images (supervised alignment), or to blindly yet consistently segment the object in a number of regions (unsupervised alignment). We furthermore argue that in the distinction of finegrained sub-categories, classification-oriented encodings like Fisher vectors are better suited for describing localized information than popular matching oriented features like HOG. We evaluate the method on the CU-2011 Birds and Stanford Dogs fine-grained datasets, outperforming the state-of-the-art.

iSPA-Net: Iterative Semantic Pose Alignment Network

2018

Understanding and extracting 3D information of objects from monocular 2D images is a fundamental problem in computer vision. In the task of 3D object pose estimation, recent data driven deep neural network based approaches suffer from scarcity of real images with 3D keypoint and pose annotations. Drawing inspiration from human cognition, where the annotators use a 3D CAD model as structural reference to acquire ground-truth viewpoints for real images; we propose an iterative Semantic Pose Alignment Network, called iSPA-Net. Our approach focuses on exploiting semantic 3D structural regularity to solve the task of fine-grained pose estimation by predicting viewpoint difference between a given pair of images. Such image comparison based approach also alleviates the problem of data scarcity and hence enhances scalability of the proposed approach for novel object categories with minimal annotation. The fine-grained object pose estimator is also aided by correspondence of learned spatial ...

Local Alignments for Fine-Grained Categorization

International Journal of Computer Vision, 2014

The aim of this paper is fine-grained categorization without human interaction. Different from prior work, which relies on detectors for specific object parts, we propose to localize distinctive details by roughly aligning the objects using just the overall shape. Then, one may proceed to the classification by examining the corresponding regions of the alignments. More specifically, the alignments are used to transfer part annotations from training images to unseen images (supervised alignment), or to blindly yet consistently segment the object in a number of regions (unsupervised alignment). We further argue that for the distinction of subclasses, distribution-based features like color Fisher vectors are better suited for describing localized appearance of finegrained categories than popular matching oriented shapesensitive features, like HOG. They allow capturing the subtle local differences between subclasses, while at the same time being robust to misalignments between distinctive details. We evaluate the local alignments on the CUB-2011 and on the Stanford Dogs datasets, composed of 200 and 120, visually very hard to distinguish bird and dog species. In our experiments we study and show the benefit of the color Fisher vector parameterization, the influence of the alignment partitioning, and the significance of object segmentation on fine-grained categorization. We, furthermore, show that by using object detectors as voters to generate object confidence saliency maps, we arrive at fully unsupervised, yet highly accurate Communicated by Florent Perronnin.

Semantic Matching by Weakly Supervised 2D Point Set Registration

2019 IEEE Winter Conference on Applications of Computer Vision (WACV)

In this paper we address the problem of establishing correspondences between different instances of the same object. The problem is posed as finding the geometric transformation that aligns a given image pair. We use a convolutional neural network (CNN) to directly regress the parameters of the transformation model. The alignment problem is defined in the setting where an unordered set of semantic key-points per image are available, but, without the correspondence information. To this end we propose a novel loss function based on cyclic consistency that solves this 2D point set registration problem by inferring the optimal geometric transformation model parameters. We train and test our approach on a standard benchmark dataset Proposal-Flow (PF-PASCAL)[8]. The proposed approach achieves state-of-the-art results demonstrating the effectiveness of the method. In addition, we show our approach further benefits from additional training samples in PF-PASCAL generated by using category level information.