Cinnamic Derivatives as Antitubercular Agents: Characterization by Quantitative Structure–Activity Relationship Studies (original) (raw)

2-Hydroxy-substituted cinnamic acids and acetanilides are selective growth inhibitors of Mycobacterium tuberculosis

MedChemComm, 2014

Selective chemical hits are required for feeding the initial discovery phase of the anti-tuberculosis therapeutics pipeline. These chemical entities should ideally target novel mechanisms of action in order to tackle drug resistance in Mycobacterium tuberculosis. In this work, hydroxycinnamic acid and acetamidophenol skeleta were employed for assessing the effects of constitutional isomerism on in vitro anti-TB activity. The whole cell evaluation of minimum inhibitory concentration values of different substituted cinnamic acids and acetamidophenols showed that the free ortho hydroxyl group conferred both potency and selectivity. Both 2-coumaric acid and 2-acetamidophenol showed minimum inhibitory concentration below 150 mM against M. tuberculosis H 37 Rv and selectivity index higher than 30.

Synthesis and evaluation of a novel series of pseudo-cinnamic derivatives as antituberculosis agents

Bioorganic & Medicinal Chemistry Letters, 2009

In an effort to develop potent new antituberculous drugs effective against Mycobacterium tuberculosis, we have prepared series of cinnamic derivatives (thioesters and amides) with 4-hydroxy and 4-alkoxy groups and investigated the in vitro activities of these compounds. Among them some displayed a good in vitro antibacterial activity, such as (E)-N-(2-acetamidoethyl)-3-{4-[(E)-3,7-dimethylocta-2,6-dienyloxy]phenyl}acrylamide 4b that showed a minimum inhibitory concentration of 0.1 lg/mL (0.26 lM) against M. tuberculosis H37Rv.

2D-QSAR model development and analysis on variant groups of anti-tuberculosis drugs

A quantitative structure activity relationship study was performed on different groups of anti-tuberculosis drug compound for establishing quantitative relationship between biological activity and their physicochemical /structural properties. In recent years, a large number of herbal drugs are promoted in treatment of tuberculosis especially due to the emergence of MDR (multi drug resistance) and XDR (extensive drug resistance) tuberculosis. Multidrug-resistant TB (MDR-TB) is resistant to front-line drugs (isoniazid and rifampicin, the most powerful anti-TB drugs) and extensively drug-resistant TB (XDR-TB) is resistant to front-line and second-line drugs. The possibility of drug resistance TB increases when patient does not take prescribed drugs for defined time period. Natural products (secondary metabolites) isolated from the variety of sources including terrestrial and marine plants and animals, and microorganisms, have been recognized as having antituberculosis action and have recently been tested preclinically for their growth inhibitory activity towards Mycobacterium tuberculosis or related organisms. A quantitative structure activity relationship (QSAR) studies were performed to explore the antituberculosis compound from the derivatives of natural products. Theoretical results are in accord with the in vitro experimental data with reported growth inhibitory activity towards Mycobacterium tuberculosis or related organisms. Antitubercular activity was predicted through QSAR model, developed by forward feed multiple linear regression method with leave-one-out approach. Relationship correlating measure of QSAR model was 74% (R 2 = 0.74) and predictive accuracy was 72% (RCV 2 = 0.72). QSAR studies indicate that dipole energy and heat of formation correlate well with anti-tubercular activity. These results could offer useful references for understanding mechanisms and directing the molecular design of new lead compounds with improved anti-tubercular activity. The generated QSAR model revealed the importance of structural, thermodynamic and electro topological parameters. The quantitative structure activity relationship provides important structural insight in designing of potent antitubercular agent.

Quantitative structure-activity relationship (QSAR) modelling study of some novel carboxamide series as new anti-tubercular agents

Bulletin of the National Research Centre, 2020

Background: QSAR modelling was performed on thirty-five (35) newly discovered compounds of N-(2-phenoxy) ethyl imidazo[1,2-a] pyridine-3-carboxamide (IPA) to predict their biological activities against Mycobacterium tuberculosis (MTB-H37Rv strain) by using some numerical data derived from structural and chemical features (descriptors) of the compounds. Results: At first, the structure of the compounds was accurately drawn and optimized using the Spartan 14 software at DFT level of theory with B3LYP/6-31G** basis set in a vacuum. The diverse chemometric descriptors were computed from the optimized structures using the PaDEL descriptors software, and the division of the dataset into training and test sets was done based on Kennard-Stone's algorithm. Five (5) models were generated from the training set using genetic function approximation, and model 1 was chosen as the best due to its robust internal and external validation metrics (R 2 train = 0.8563, R 2 adjusted = 0.8185, PRESS = 3.5724, average R 2 m (LOO-train) = 0.6751, Q 2 cv = 0.7534, R 2 pred ¼ 0.7543, R 2 test = 0.6993) which passed the model criteria of acceptability. 6-Bromo-N-(2-(4-bromophenoxy) ethyl)-2ethylimidazo[1,2-a] pyridine-3-carboxamide (compound 13) was used as the structural template for the in silico design due to its high pMIC, and it is within the model's chemical space. Conclusion: Based on the information obtained from model 1, six (6) designed compounds with higher antitubercular activity were obtained. Furthermore, the ADME and drug-likeness prediction of the designed molecules showed good pharmacokinetic properties which indicate the application prospect of these compounds as novel MTB-H37Rv inhibitors. This research could help the medicinal chemists and pharmaceutical practitioners in future designing and development of more potent drug candidates.

Structure−Antifungal Activity Relationship of Cinnamic Acid Derivatives

Journal of Agricultural and Food Chemistry, 2007

A structure-antifungal activity relationship (SAR) study of 22 related cinnamic acid derivatives was carried out. Attention was focused on the antifungal activities exhibited against Aspergillus flavus, Aspergillus terreus, and Aspergillus niger. (E)-3-(4-Methoxy-3-(3-methylbut-2-enyl)phenyl)acrylic acid (16) exhibited antifungal activity against A. niger, comparable to that of miconazole and a significant antifungal effect against A. flavus and A. terreus as well. A structure-activity relationship (SAR) study of related cinnamic acid derivatives has allowed a model to be proposed for the recognition of the minimal structural requirements for the antifungal effect in this series.

Novel molecular hybrids of cinnamic acids and guanylhydrazones as potential antitubercular agents

Bioorganic & Medicinal Chemistry Letters, 2010

In an attempt to identify potential new agents active against tuberculosis, 20 novel phenylacrylamide derivatives incorporating cinnamic acids and guanylhydrazones were synthesized using microwave assisted synthesis. Activity of the synthesized compounds was evaluated using resazurin microtitre plate assay (REMA) against Mycobacterium tuberculosis H37Rv. Based on empirical structure-activity relationship data it was observed that both steric and electronic parameters play major role in the activity of this series of compounds. Compound 7s (2E)-N-((-2-(3,4-dimethoxybenzylidene) hydrazinyl) (imino) methyl)-3-(4-methoxyphenyl) acrylamide showed MIC of 6.49 lM along with good safety profile of >50-fold in VERO cell line. Thus, this compound could act as a potential lead for further antitubercular studies.