“Effects Of Heat Source Location On Natural Convection In A Square Cavity” (original) (raw)

IJERT-Effects Of Heat Source Location On Natural Convection In A Square Cavity

International Journal of Engineering Research and Technology (IJERT), 2014

https://www.ijert.org/effects-of-heat-source-location-on-natural-convection-in-a-square-cavity https://www.ijert.org/research/effects-of-heat-source-location-on-natural-convection-in-a-square-cavity-IJERTV1IS6332.pdf Natural convection in a closed square cavity has occupied the centre stage in many fundamental heat transfer analysis which is of prime importance in certain technological applications. Infact buoyancy driven convection in a sealed cavity with differentially heated isothermal walls is a prototype of many industrial applications such as energy efficient buildings, operation and safety of nuclear reactor and convective heat transfer associated with electronic cooling equipment. The internal flow problems are considerably more complex than external ones. In electronic systems normally the heat generating bodies exist within the cavity. The effect of the presence of heat source on the mass flow rate and heat transfer is considered in present case for investigation. In order to verify the methodology of using fluent, the commercial software, the available problem in the literature is verified for parametric study on the location of heat source and its strength is considered for study. In present work, the given source is split into two parts and its effect on the flow rate and heat transfer is studied. An attempt is made for the best location of the heat source in the cavity so that it can be used in the electronic equipment generating heat. Nomenclatures AR = Aspect ratios, H/L, Gr = Grashoff Number g = Acceleration due to gravity (m/s 2), Ra = Rayleigh number H = Height of the cavity (m), Pr = Prandtl number h = Convective heat transfer coefficient (W/m 2 K) k = Thermal conductivity (W/m.K), Nu = Nusselt number L = Length of the cavity (m), T = Temperature (K) q = Heat flux (W/m 2) Greek Symbols α = Thermal diffusivity (m 2 /s) β = Volume expansion coefficient (K-1) ρ = Fluid Density (kg/m 3) ν = Kinematic viscosity (m 2 /s) θ = Dimensionless temperature Subscript b = Bottom wall s = Side wall

Experimental Results for Natural Convection Heat Transfer in a Cavity with Flush Mounted Heat Sources

2003

In this work, a experimental study of the natural convection heat transfer in a cavity with discrete heat sources flush mounted in one of the walls, simulating electronic components, is carried out. The inferior and superior walls are insulated and the temperature of the opposite wall to the one with heat sources is maintained constant, lower than the environment temperature. The influence of power dissipated by the sources, the cooling temperature, the aspect ratio and the inclination angle of the cavity with respect to the horizontal plane, on the flow and the heat transfer, have all been evaluated. Cubic cavities were built and experimental tests for measure of the temperature was realized by using thermocouples and a data acquisition system controlled by computer, being obtained the temperature fields inside the cavity, as well as the temperature distribution in the wall where the heat sources are mounted. The results were compared with respect to the maximum temperature in the ...

Natural convection in a partially open square cavity with internal heat source: An analysis of the opening mass flow

International Journal of Heat and Mass Transfer, 2011

A steady buoyancy-driven flow of air in a partially open square 2D cavity with internal heat source, adiabatic bottom and top walls, and vertical walls maintained at different constant temperatures is investigated numerically in this work. A heat source with 1% of the cavity volume is present in the center of the bottom wall. The cold right wall contains a partial opening occupying 25%, 50% or 75% of the wall. The influence of the temperature gradient between the verticals walls was analyzed for Ra e = 10 3-10 5 , while the influence of the heat source was evaluated through the relation R = Ra i /Ra e , investigated at between 400 and 2000. Interesting results were obtained. For a low Rayleigh number, it is found that the isotherm plots are smooth and follow a parabolic shape indicating the dominance of the heat source. But as the Ra e increases, the flow slowly becomes dominated by the temperature difference between the walls. It is also observed that multiple strong secondary circulations are formed for fluids with a small Ra e whereas these features are absent at higher Ra e. The comprehensive analysis is concluded with horizontal air velocity and temperature plots for the opening. The numerical results show a significant influence of the opening on the heat transfer in the cavity.

Natural Convection Cooling of a Heat Source Placed at the Bottom of a Square Cavity. Effect of Source Length, Position, Thermal Condition and Prandtl Number

International Journal of Heat and Technology, 2020

Cooling process of a heat source placed at the bottom side of a cold-walled cavity (TC) by means of natural convection has been studied numerically in this work. Two thermal conditions have been assumed at the source (q-imposed or T-imposed). The effects of Rayleigh number (Ra=10+3→10+6), source length (SL=0.1→1.0), source position (D) compared to left side, in addition to the effect of the number of Prandtl (Pr=0.71→10+2) were analyzed with ample details. For a source at the center of the bottom side, results showed an increase of flow and temperature disturbance with increasing Ra and/or SL, with an enhancement of both local and mean Nusselt numbers. Particular exceptions were noticed for high Ra values for the second heating type. For all considerations, the case of SL=0.1 makes an exception where a very good heat exchange rate is recorded. When the source is no longer centered, Clearer difference between this case and the previous one was recorded, especially for small D values....

Numerical Study of Natural Convection Inside a Square Cavity with Non-uniform Heating from Top

Journal of The Institution of Engineers (India): Series C, 2020

The prime objective of the present numerical study is to analyse buoyancy-driven thermal flow behaviour inside an enclosure with the application of nonlinear heating from top surface which is commonly essential in glass industries. A fluid-filled square cavity with sinusoidal heating from top surface, adiabatic bottom wall and constant temperature side walls is considered here. The thermal flow behaviour has been numerically observed with the help of relevant parameters like stream functions, isotherms and Nusselt number. For the present investigation, Rayleigh number (Ra), Prandtl number (Pr) and heating frequency of the wall (x) are varied from 10 3 to 10 6 , 0.7 to 7 and 0.5 to 2, respectively. It has been noticed from the investigation that flow dynamics drastically alter with Ra, x and Pr. However, the effect of Ra on heat transfer rate has been found to be significantly higher while compared with the influences by x and Pr. Keywords Free convection Á Buoyancy Á Rayleigh number Á Pr number Á Sinusoidal heating Greek letters a Thermal diffusivity (m 2 s-1) b Volumetric expansion coefficient (K-1) q Kinetic viscosity (m 2 s-1) t Density of fluid (kg m-3) h Dimensionless temperature x Heating frequency of the top wall

IJERT-Numerical Investigation of Natural Convection Heat Transfer in a Square Cavity

International Journal of Engineering Research and Technology (IJERT), 2015

https://www.ijert.org/numerical-investigation-of-natural-convection-heat-transfer-in-a-square-cavity https://www.ijert.org/research/numerical-investigation-of-natural-convection-heat-transfer-in-a-square-cavity-IJERTV4IS070206.pdf Natural convection heat transfer in enclosures find many applications such as heating and cooling of building spaces, solar energy utilization, thermal energy storage, cooling of electrical and electronic components etc. In the present study, Numerical Investigation is conducted in a square cavity with one vertical wall maintained at a high temperature and with the opposing vertical wall at a low temperature. The influence of Grashof numbers ranging from 20000 to 200000 for Prandtl number 0.7 (air) is studied. The governing vorticity and energy equations are solved by finite difference methods including Alternating Direction Implicit (ADI) and Successive Over Relaxation (SOR) techniques with C coding. Steady state isothermal lines and streamlines are obtained for all the Grashof numbers considered. In addition, the average Nusselt number, over the hot wall for the range of Grashof numbers is calculated. The contours of streamlines and isothermal lines are presented for all the parameters investigated. Changes in the streamline and isothermal line patterns are observed with the change in Grashof numbers. The results obtained in this study are useful for the design of devices with enclosures subjected to high temperature differences.

Natural convection flow in a square cavity with internal heat generation and a flush mounted heater on a side wall

Journal of Naval Architecture and Marine Engineering, 2011

In this study natural convection flow in a square cavity with heat generating fluid and a finite size heater on the vertical wall have been investigated numerically. To change the heat transfer in the cavity, a heater is placed at different locations on the right vertical wall of the cavity, while the left wall is considered to be cold. In addition, the top and bottom horizontal walls are considered to be adiabatic and the cavity is assumed to be filled with a Bousinessq fluid having a Prandtl number of 0.72. The governing mass, momentum and energy equations along with boundary conditions are expressed in a normalized primitive variables formulation. Finite Element Method is used in solution of the normalized governing equations. The parameters leading the problem are the Rayleigh number, location of the heater, length of the heater and heat generation. To observe the effects of the mentioned parameters on natural convection in the cavity, we considered various values of heater locations, heater length and heat generation parameter for different values of Ra varying in the range 102 to 105. Results are presented in terms of streamlines, isotherms, average Nusselt number at the hot wall and average fluid temperature in the cavity for the mentioned parameters. The results showed that the flow and thermal fields through streamlines and isotherms as well as the rate of heat transfer from the heated wall in terms of Nusselt number are strongly dependent on the length and locations of the heater as well as heat generating parameter.

Effects of heater location and heater size on the natural convection heat transfer in a square cavity using finite element method

Journal of Mechanical Science and Technology, 2015

Finite element method was used to investigate the effects of heater location and heater size on the natural convection heat transfer in a 2D square cavity heated partially or fully from below and cooled from above. Rayleigh number (5Í10 2 ≤ Ra ≤ 5Í10 5), heater size (0.1 ≤ D/L ≤ 1.0), and heater location (0.1 ≤ x h /L ≤ 0.5) were considered. Numerical results indicated that the average Nusselt number (Nu m) increases as the heater size decreases. In addition, when x h /L is less than 0.4, Nu m increases as x h /L increases, and Nu m decreases again for a larger value of x h /L. However, this trend changes when Ra is less than 10 4 , suggesting that Nu m attains its maximum value at the region close to the bottom surface center. This study aims to gain insight into the behaviors of natural convection in order to potentially improve internal natural convection heat transfer.

Effects of thermal boundary conditions on natural convection flows within a square cavity

International Journal of Heat and Mass Transfer, 2006

A numerical study to investigate the steady laminar natural convection flow in a square cavity with uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls has been performed. A penalty finite element method with bi-quadratic rectangular elements has been used to solve the governing mass, momentum and energy equations. The numerical procedure adopted in the present study yields consistent performance over a wide range of parameters (Rayleigh number Ra, 10 3 6 Ra 6 10 5 and Prandtl number Pr, 0.7 6 Pr 6 10) with respect to continuous and discontinuous Dirichlet boundary conditions. Non-uniform heating of the bottom wall produces greater heat transfer rates at the center of the bottom wall than the uniform heating case for all Rayleigh numbers; however, average Nusselt numbers show overall lower heat transfer rates for the non-uniform heating case. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained and for convection dominated regimes, power law correlations between average Nusselt number and Rayleigh numbers are presented.