Role of transglutaminase 2 in PAC1 receptor mediated protection against hypoxia-induced cell death and neurite outgrowth in differentiating N2a neuroblastoma cells (original) (raw)

Vaudry, D. et al. PACAP protects cerebellar granule neurons against oxidative stress induced apoptosis. Eur. J. Neurosci. 15, 1451-1460

European Journal of Neuroscience

Oxidative stress, resulting from accumulation of reactive oxygen species, plays a critical role in neuronal cell death associated with neurodegenerative diseases and stroke. In the present study, we have investigated the potential neuroprotective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on oxidative stress-induced apoptosis. Incubation of cerebellar granule cells with PACAP inhibited hydrogen peroxide-evoked cell death in a concentration-dependent manner. The effect of PACAP on granule cell survival was not mimicked by vasoactive intestinal polypeptide and was blocked by the antagonist PACAP6-38. The protective action of PACAP upon hydrogen peroxide-induced neuronal cell death was abolished by the MAP-kinase kinase (MEK) inhibitor U0126 and mimicked by the caspase-3 inhibitor Z-DEVD-FMK. PACAP markedly inhibited hydrogen peroxide-evoked caspase-3 activation and DNA fragmentation. Taken together, these data indicate that PACAP, acting through PACAP receptor type 1, exerts a potent protective effect against neuronal degeneration induced by hydrogen peroxide. The anti-apoptotic effect of PACAP is mediated through the MAP-kinase pathway and can be accounted for by inhibition of caspase-3 activation resulting from oxidative stress.

Pleiotropic Functions of PACAP in the CNS: Neuroprotection and Neurodevelopment

Annals of the New York Academy of Sciences, 2006

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide that belongs to the secretin/glucagon/vasoactive intestinal peptide (VIP) family. PACAP prevents ischemic delayed neuronal cell death (apoptosis) in the hippocampus. PACAP inhibits the activity of the mitogen-activated protein kinase (MAPK) family, especially JNK/SAPK and p38, thereby protecting against apoptotic cell death. After the ischemia-reperfusion, both pyramidal cells and astrocytes increased their expression of the PACAP receptor (PAC1-R). Reactive astrocytes increased their expression of PAC1-R, released interleukin-6 (IL-6) that is a proinflammatory cytokine with both differentiation and growth-promoting effects for a variety of target cell types, and thereby protected neurons from apoptosis. These results suggest that PACAP itself and PACAP-stimulated secretion of IL-6 synergistically inhibit apoptotic cell death in the hippocampus. The PAC1-R is expressed in the neuroepithelial cells from early developmental stages and in various brain regions during development. We have recently found that PACAP, at physiological concentrations, induces differentiation of mouse neural stem cells into astrocytes. Neural stem cells were prepared from the telencephalon of mouse embryos and cultured with basic fibroblast growth factor. The PAC1-R immunoreactivity was demonstrated in the neural stem cells. When neural stem cells were exposed to PACAP, about half of these cells showed glial fibrillary acidic protein (GFAP) immunoreactivity. This phenomenon was significantly antagonized by a PAC1-R antagonist (PACAP6-38), indicating that PACAP induces differentiation of neural stem cell into astrocytes. Other our physiological studies have demonstrated that PACAP acts on PAC1-R in mouse neural stem cells and its

PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis

European Journal of Neuroscience, 2002

Oxidative stress, resulting from accumulation of reactive oxygen species, plays a critical role in neuronal cell death associated with neurodegenerative diseases and stroke. In the present study, we have investigated the potential neuroprotective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on oxidative stress-induced apoptosis. Incubation of cerebellar granule cells with PACAP inhibited hydrogen peroxide-evoked cell death in a concentration-dependent manner. The effect of PACAP on granule cell survival was not mimicked by vasoactive intestinal polypeptide and was blocked by the antagonist PACAP6-38. The protective action of PACAP upon hydrogen peroxide-induced neuronal cell death was abolished by the MAP-kinase kinase (MEK) inhibitor U0126 and mimicked by the caspase-3 inhibitor Z-DEVD-FMK. PACAP markedly inhibited hydrogen peroxide-evoked caspase-3 activation and DNA fragmentation. Taken together, these data indicate that PACAP, acting through PACAP receptor type 1, exerts a potent protective effect against neuronal degeneration induced by hydrogen peroxide. The anti-apoptotic effect of PACAP is mediated through the MAP-kinase pathway and can be accounted for by inhibition of caspase-3 activation resulting from oxidative stress.

Effects of PACAP on in vitro and in vivo neuronal cell death, platelet aggregation, and production of reactive oxygen radicals

Regulatory Peptides, 2004

Pituitary adenylate cyclase activating polypeptide (PACAP) exerts neuroprotective effects in various in vitro and in vivo models of cerebral pathologies. It has been shown that PACAP protects neurons in rat models of both global and focal ischemia. In the present study, we investigated factors that may play a role in the neuroprotective effects of PACAP. PACAP strongly reduced the anisomycin-induced apoptosis of PC12 cells, which was abolished in a PKA-deficient PC12 cell line (A126). This effect was also observed in vivo, in permanent occlusion of the middle cerebral artery, where the number of TUNEL-positive neurons was significantly reduced in the ischemic core of PACAP-treated animals. Our results show that PACAP has a minor antioxidant effect in a non-cellular in vitro system, and has considerable antioxidant effects in an in vitro red blood cell filtration model. PACAP had no effect on platelet aggregation induced by collagen, ADP or epinephrine. Our results demonstrate that the effects of PACAP on delayed neuronal death may play a significant role in the reduction of the infarct size in vivo, but the antioxidant effect could only be observed at concentrations higher than that used in the model of focal ischemia. D

The Neurotrophic Activity of PACAP on Rat Cerebellar Granule Cells Is Associated with Activation of the Protein Kinase A Pathway and c-fos Gene Expressiona

Annals of the New York Academy of Sciences, 1998

In vitro studies have shown that PACAP promotes cell survival and neurite outgrowth in immature cerebellar granule cells. In the present study, we have examined the transduction pathways involved in the neurotrophic activity of PACAP. Incubation of cultured granule cells with graded concentrations of PACAP produced a dose-dependent increase in c-fos mRNA level. The effects of PACAP on c-fos gene expression and granule cell survival were both mimicked by dbcAMP but not by PMA. The maximum effect of PACAP on c-fos gene expression was observed after 1 h of treatment. Similar effects of the peptide on granule cell survival were observed whether the cells were continuously incubated with PACAP for 48 h or only exposed to PACAP during 1 h. The PKA inhibitor H89 significantly reduced the effect of PACAP on c-fos mRNA level, whereas the specific PKC inhibitor chelerytrine had no effect. These data indicate that the action of PACAP on cerebellar granule cell survival and c-fos gene expression are both mediated through the adenylyl cyclase/PKA pathway.

The neuroprotective effects of PACAP in monosodium glutamate-induced retinal lesion involve inhibition of proapoptotic signaling pathways

Regulatory Peptides, 2006

Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors are present in the retina and exert several distinct functions. PACAP has well-known neuroprotective effects in neuronal cultures in vitro and against different insults in vivo. Recently we have shown that PACAP is neuroprotective against monosodium glutamate (MSG)-induced retinal degeneration. In the present study we investigated the possible signal transduction pathways involved in the protective effect of intravitreal PACAP administration against apoptotic retinal degeneration induced by neonatal MSG treatment. MSG induced activation of proapoptotic signaling proteins and reduced the levels of antiapoptotic molecules in neonatal retinas. Co-treatment with PACAP attenuated the MSG-induced activation of caspase-3 and JNK, inhibited the MSG-induced cytosolic translocation of apoptosis inducing factor (AIF) and cytochrome c, and increased the level of phospho-Bad. Furthermore, PACAP treatment alone decreased cytosolic AIF and cytochrome c levels, while PACAP6-38 increased cytochrome c release, caspase-3 and JNK activity and decreased phospho-Bad activity. In summary, our results show that PACAP treatment attenuated the MSG-induced changes in apoptotic signaling molecules in vivo and suggest that also endogenously present PACAP has neuroprotective effects. These results may have further clinical implications in reducing glutamate-induced excitotoxicity in several ophthalmic diseases.

PAC1 regulates receptor tyrosine kinase transactivation in a reactive oxygen species-dependent manner

Peptides, 2018

Pituitary adenylate cyclase activating polypeptide (PACAP) is a growth factor for lung cancer cells. PACAP-27 or PACAP-38 binds with high affinity to non-small cell lung cancer (NSCLC) cells, causing elevated cytosolic Ca, increased proliferation and increased phosphorylation of extracellular regulated kinase (ERK) and the epidermal growth factor receptor (EGFR). The role of reactive oxygen species (ROS) was investigated in these processes. Addition of PACAP-38 to NCI-H838 or A549 cells increased the tyrosine phosphorylation of the EGFR, HER2 and ERK significantly by 4-, 3-, and 2-fold, respectively. The transactivation of the EGFR and HER2 was inhibited by gefitinib or lapatinib (tyrosine kinase inhibitors), PACAP (6-38) (PAC1 antagonist), N-acetylcysteine (NAC is an anti-oxidant) or dipheyleneiodonium (DPI is an inhibitor of Nox and Duox enzymes). PACAP-38 addition to NSCLC cells increased ROS which was inhibited by PACAP (6-38), NAC or DPI. Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and...

PACAP activates PKA, PKC and Ca2+ signaling cascades in rat neuroepithelial cells

Peptides, 2001

Several studies have reported that the PAC 1 receptor (PAC1-R), the specific receptor for PACAP, is expressed at early developmental stages. Here, we describe that the cytosolic Ca 2ϩ concentration ([Ca 2ϩ ] i) was increased by PACAP, but not VIP, in a concentration range from 10 Ϫ12 to 10 Ϫ8 M via the PAC 1-R in isolated single cells from the rat neural fold. This activation of the cells by PACAP was mimicked by agonists and inhibited by antagonists of the cAMP/PKA and PLC/PKC cascades. These data indicate that PACAP/PAC 1-R is linked to [Ca 2ϩ ] i signaling via two G-protein-coupled protein kinase pathways and may thereby play an important role in early neurodevelopment.