Electrodialysis-based desalination and reuse of sea and brackish polymer-flooding produced water (original) (raw)
Abstract
The reuse of polymer flooding produced water (PFPW) generated in oil and gas industry is limited by its salt content, making desalination by electrodialysis a promising treatment option. Therefore, this study aimed to 1) assess the technical feasibility of employing electrodialysis to desalinate PFPW generated in assorted scenarios, and 2) evaluate the reuse of the electrodialysis-desalted water to confect polymer-flooding solution. The experimental work involved desalting two kinds of synthetic PFPW solutions, one with relatively low salinity (TDS = 5000 mg/L, brackish PFPW), and another with high salinity (TDS = 32,000 mg/L, sea PFPW), at two different temperatures, and later reusing the desalted solution to prepare viscous solutions. For the electrodialysis runs, the effects of feed composition and temperature on water transport, energy consumption and current efficiency were analyzed. It was found that the presence of polymer did not significantly influence the water transport rate or the specific energy consumption for the seawater cases, but had a measurable effect when desalting brackish water at 20°C. It was also found that some polymer remained in the stack, the loss occurring faster for the brackish PFPW. Still, both kinds of reused PFPW probed adequate to be employed as a basis for preparing n polymer solution.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (58)
- J.A. Herschell, Water and Wastewater Treatment for Enhanced Oil Recovery, Mahon, Cork, Ireland, (2016).
- Internacional Energy Agency (IEA), World Energy Outlook 2016, Paris, http:// www.iea.org/publications/freepublications/publication/WEB\_ WorldEnergyOutlook2015ExecutiveSummaryEnglishFinal.pdf, (2016).
- A. Muggeridge, A. Cockin, K. Webb, H. Frampton, I. Collins, T. Moulds, P. Salino, Recovery rates, enhanced oil recovery and technological limits, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372 (2013) 20120320, https://doi.org/10.1098/rsta. 2012.0320.
- J.J. Sheng, B. Leonhardt, N. Azri, Status of polymer-flooding technology, J. Can. Pet. Technol. 54 (2015) 116-126, https://doi.org/10.2118/174541-PA.
- M.S. Kamal, A.S. Sultan, U.A. Al-Mubaiyedh, I.A. Hussein, Review on polymer flooding: rheology, adsorption, stability, and field applications of various polymer systems, Polym. Rev. 55 (2015) 491-530, https://doi.org/10.1080/15583724\. 2014.982821.
- L. Henthorne, G.A. Pope, U. Weerasooriya, V. Llano, Impact of Water Softening on Chemical Enhanced Oil Recovery, (2014).
- D.C. Standnes, I. Skjevrak, Literature review of implemented polymer field projects, J. Pet. Sci. Eng. 122 (2014) 761-775, https://doi.org/10.1016/j.petrol.2014.08\. 024.
- S. of O. Ministry of Oil & Gas, Oil & Gas Law, http://www.oman.om/wps/wcm/ connect/f5b459d2-584d-42a9-b766-f8f555567763/10Oil+and+Gas+Law+ %28Royal+Decree+No.+4274%29.pdf?MOD=AJPERES, (2011).
- G. Riethmuller, A. Abri, N. Al Azri, G. Stapel, S. Nijman, W. Subhi, R. Mehdi, Opportunities and challenges of polymer flooding in heavy oil reservoir in south of Oman, SPE EOR Conf. Oil Gas West Asia. 2014, https://doi.org/10.2118/ 169737-MS.
- A. Fakhru'l-Razi, A. Pendashteh, L.C. Abdullah, D.R.A. Biak, S.S. Madaeni, Z.Z. Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater. 170 (2009) 530-551, https://doi.org/10.1016/j.jhazmat.2009.05\. 044.
- Oil & Gas Authority United Kingdom, Polymer Enhanced Oil Recovery, London, (2017).
- Y. Liu, E.B. Kujawinski, Chemical composition and potential environmental impacts of water-soluble polar crude oil components inferred from esi FT-ICR MS, PLoS One 10 (2015) 1-18, https://doi.org/10.1371/journal.pone.0136376.
- G. Jing, L. Xing, S. Li, C. Han, Reclaiming polymer-flooding produced water for beneficial use: salt removal via electrodialysis, Desalin. Water Treat. 25 (2011) 71-77, https://doi.org/10.5004/dwt.2011.1766.
- E. Drioli, A. Ali, Y.M. Lee, S.F. Al-Sharif, M. Al-Beirutty, F. Macedonio, Membrane operations for produced water treatment, Desalin. Water Treat. 3994 (2015) 1-19, https://doi.org/10.1080/19443994.2015.1072585.
- R. Zhang, W. Shi, S. Yu, W. Wang, Z. Zhang, B. Zhang, L. Li, X. Bao, Influence of salts, anion polyacrylamide and crude oil on nanofiltration membrane fouling during desalination process of polymer flooding produced water, Desalination 373 (2015) 27-37, https://doi.org/10.1016/j.desal.2015.07.006.
- A. Samanta, A. Bera, K. Ojha, A. Mandal, Effects of alkali, salts, and surfactant on rheological behavior of partially hydrolyzed polyacrylamide solutions, J. Chem. Eng. Data 55 (2010) 4315-4322, https://doi.org/10.1021/je100458a.
- S.C. Ayirala, E. Uehara-Nagamine, A.N. Matzakos, R.W. Chin, P.H. Doe, P.J. van den Hoek, A designer water process for offshore low salinity and polymer flooding applications, SPE Improv. Oil Recover. Symp. 2013, https://doi.org/10.2118/ 129926-MS.
- C. Murray-Gulde, J.E. Heatley, T. Karanfil, J.H. Rodgers, J.E. Myers, Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water, Water Res. 37 (2003) 705-713, https://doi.org/10.1016/ S0043-1354(02)00353-6.
- E.T. Igunnu, G.Z. Chen, Produced water treatment technologies, Int. J. Low Carbon Technol. 9 (2014) 157-177, https://doi.org/10.1093/ijlct/cts049.
- S. Munirasu, M.A. Haija, F. Banat, Use of membrane technology for oil field and refinery produced water treatment-a review, Process. Saf. Environ. Prot. 100 (2016) 183-202, https://doi.org/10.1016/j.psep.2016.01.010.
- G. Jing, X. Wang, H. Zhao, Study on TDS removal from polymer-flooding waste- water in crude oil: extraction by electrodialysis, Desalination 244 (2009) 90-96, https://doi.org/10.1016/j.desal.2008.04.039.
- E.C.M. Vermolen, M. Pingo-Almada, B.M. Wassing, D.J. Ligthelm, S.K. Masalmeh, H. Mohammadi, G.R. Jerauld, M. Pancharoen, IPTC 17342 low-salinity polymer flooding: improving polymer flooding technical feasibility and economics by using low-salinity make-up brine, SPE Imroved Oil Recover. Symp. 15 2014, https://doi. org/10.2118/153161-MS.
- G. Jing, Y. Liu, T. Zhao, C. Han, Reclamation of the polymer-flooding produced water, 2nd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008, 2008, pp. 3240-3243, , https://doi.org/10.1109/ICBBE.2008.1138.
- T. Wang, S. Yu, L-an Hou, Impacts of HPAM molecular weights on desalination performance of ion exchange membranes and fouling mechanism, Desalination 404 (2017) 50-58, https://doi.org/10.1016/j.desal.2016.10.007.
- H. Guo, L. Xiao, S. Yu, H. Yang, J. Hu, G. Liu, Y. Tang, Analysis of anion exchange membrane fouling mechanism caused by anion polyacrylamide in electrodialysis, Desalination 346 (2014) 46-53, https://doi.org/10.1016/j.desal.2014.05.010.
- H. Al Kalbani, M.S. Mandhari, H. Al-Hadhrami, G. Philip, J. Nesbit, L. Gil, N. Gaillard, Treating Back Produced Polymer To Enable Use Of Conventional Water Treatment Technologies, (2014), https://doi.org/10.2118/169719-MS.
- D.B. Levitt, The Optimal Use of Enhanced Oil Recovery Polymers Under Hostile Conditions, The University of Texas at Austin, 2009.
- J. Zheng, B. Chen, W. Thanyamanta, K. Hawboldt, B. Zhang, B. Liu, Offshore pro- duced water management: a review of current practice and challenges in harsh/ Arctic environments, Mar. Pollut. Bull. 104 (2016) 7-19, https://doi.org/10.1016/ j.marpolbul.2016.01.004.
- D.A. Vermaas, M. Saakes, K. Nijmeijer, Doubled power density from salinity gra- dients at reduced intermembrane distance, Environ. Sci. Technol. 45 (2011) 7089-7095, https://doi.org/10.1021/es2012758.
- H. Guo, F. You, S. Yu, L. Li, D. Zhao, Mechanisms of chemical cleaning of ion ex- change membranes: a case study of plant-scale electrodialysis for oily wastewater treatment, J. Membr. Sci. 496 (2015) 310-317, https://doi.org/10.1016/j.memsci. 2015.09.005.
- S.A. Huber, A. Balz, M. Abert, W. Pronk, Characterisation of aquatic humic and non- humic matter with size-exclusion chromatography -organic carbon detection -or- ganic nitrogen detection (LC-OCD-OND), Water Res. 45 (2011) 879-885, https:// doi.org/10.1016/j.watres.2010.09.023.
- H. Strathmann, Electromembrane processes: basic aspects and applications, Compr. Membr. Sci. Eng. (2010) 391-429, https://doi.org/10.1016/B978-0-08-093250-7\. 00048-7.
- A.H. Galama, M. Saakes, H. Bruning, H.H.M. Rijnaarts, J.W. Post, Seawater pre- desalination with electrodialysis, Desalination 342 (2014) 61-69, https://doi.org/ 10.1016/j.desal.2013.07.012.
- C. Jiang, Q. Wang, Y. Li, Y. Wang, T. Xu, Water electro-transport with hydrated P.A. Sosa-Fernandez et al. Desalination 447 (2018) 120-132
- cations in electrodialysis, Desalination 365 (2015) 204-212, https://doi.org/10\. 1016/j.desal.2015.03.007.
- T. Sata, Ion Exchange Membranes: Preparation, Characterization, Modification and Application, Royal Society of Chemistry, 2004.
- V.K. Indusekhar, N. Krishnaswamy, Water transport studies on interpolymer ion- exchange membranes, Desalination 52 (1985) 309-316, https://doi.org/10.1016/ 0011-9164(85)80040-0.
- A.G. Winger, R. Ferguson, R. Kunin, electroosmotic transport of water across permselective membranes, J. Phys. Chem. 60 (1956) 556-558, https://doi.org/10\. 1021/j150539a010.
- N. Berezina, N. Gnusin, O. Dyomina, S. Timofeyev, Water electrotransport in membrane systems. Experiment and model description, J. Membr. Sci. 86 (1994) 207-229, https://doi.org/10.1016/0376-7388(93)E0075-U.
- L. Han, S. Galier, H. Roux-de Balmann, Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution, Desalination 373 (2015) 38-46, https://doi.org/10.1016/j.desal.2015.06.023.
- S. Porada, W.J. van Egmond, J.W. Post, M. Saakes, H.V.M. Hamelers, Tailoring ion exchange membranes to enable low osmotic water transport and energy efficient electrodialysis, J. Membr. Sci. 552 (2018) 22-30, https://doi.org/10.1016/j. memsci.2018.01.050.
- G.M. Geise, D.R. Paul, B.D. Freeman, Fundamental water and salt transport prop- erties of polymeric materials, Prog. Polym. Sci. 39 (2014) 1-24, https://doi.org/10\. 1016/j.progpolymsci.2013.07.001.
- M.J. Blandamer, J.B.F.N. Engberts, P.T. Gleeson, J.C.R. Reis, Activity of water in aqueous systems; a frequently neglected property, Chem. Soc. Rev. 34 (2005) 440, https://doi.org/10.1039/b400473f.
- S. Shi, S. Cho, Y. Lee, S. Yun, J. Woo, S. Moon, Desalination of Fish Meat Extract by Electrodialysis and Characterization of Membrane Fouling, 28 (2011), pp. 575-582, https://doi.org/10.1007/s11814-010-0375-4.
- L. Bazinet, D. Lavigne, N. Martin, Partial Demineralization of Maple Sap by Electrodialysis: Impact on Syrup Sensory and Physicochemical Characteristics, 1698 (2007), pp. 1691-1698, https://doi.org/10.1002/jsfa.
- P. Vadthya, A. Kumari, C. Sumana, S. Sridhar, Electrodialysis aided desalination of crude glycerol in the production of biodiesel from oil feed stock, Desalination 362 (2015) 133-140, https://doi.org/10.1016/j.desal.2015.02.001.
- W.J. van Egmond, U.K. Starke, M. Saakes, C.J.N. Buisman, H.V.M. Hamelers, Energy efficiency of a concentration gradient flow battery at elevated temperatures, J. Power Sources 340 (2017) 71-79, https://doi.org/10.1016/j.jpowsour.2016.11\. 043.
- Y. Ghalavand, M.S. Hatamipour, A. Rahimi, A review on energy consumption of desalination processes, Desalin. Water Treat. 54 (2015) 1526-1541, https://doi. org/10.1080/19443994.2014.892837.
- H. Strathmann, Ion-Exchange Membrane Processes in Water Treatment, Elsevier, 2010, https://doi.org/10.1016/S1871-2711(09)00206-2.
- D. Wang, J. Cheng, Q. Yang, G. Wenchao, L. Qun, F. Chen, Viscous-Elastic Polymer Can Increase Microscale Displacement Efficiency in Cores, (2000), https://doi.org/ 10.2118/63227-MS.
- R. Zhang, X. He, S. Cai, K. Liu, Rheology of diluted and semi-diluted partially hy- drolyzed polyacrylamide solutions under shear: experimental studies, Petroleum (2016) 1-10, https://doi.org/10.1016/j.petlm.2016.08.001.
- J.D. Isdale, C.M. Spence, J.S. Tudhope, Physical properties of sea water solutions: viscosity, Desalination 10 (1972) 319-328, https://doi.org/10.1016/S0011- 9164(00)80002-8.
- J.C. Jung, K. Zhang, B.H. Chon, H.J. Choi, Rheology and polymer flooding char- acteristics of partially hydrolyzed polyacrylamide for enhanced heavy oil recovery, J. Appl. Polym. Sci. 127 (2013) 4833-4839, https://doi.org/10.1002/app.38070.
- S. Choi, pH Sensitive Polymers for Novel Conformance Control and Polymer Flooding Applications, The University of Texas at Austin, 2008.
- M.P.S. Gomes, M. Costa, Determination of the critical concentration of partially hydrolyzed polyacrylamide by potentiometry in an acidic medium, J. Appl. Polym. Sci. 128 (2013) 2167-2172, https://doi.org/10.1002/app.38310.
- S. Peng, C. Wu, Light scattering study of the formation and structure of partially hydrolyzed poly(acrylamide)/calcium(II) complexes, Macromolecules 32 (1999) 585-589.
- Y. Tanaka, Concentration polarization in ion-exchange membrane electrodialysis: the events arising in an unforced flowing solution in a desalting cell, J. Membr. Sci. 244 (2004) 1-16, https://doi.org/10.1016/j.memsci.2004.02.041.
- P.A. Sosa-Fernandez et al. Desalination 447 (2018) 120-132