A comparative study of the chondrogenic potential between synthetic and natural scaffolds in an in vivo bioreactor (original) (raw)

Characterization of a biomaterial with cartilage-like properties expressing type X collagen generated in vitro using neonatal porcine articular and growth plate chondrocytes

Osteoarthritis and Cartilage, 2001

Objective: The availability of cartilage with or without the potential to ossify and suitable for surgical restoration and resurfacing of joints is an important clinical problem in arthritis-related pathology, trauma and reconstructive surgery. Here, we designed experiments to generate a biomaterial with cartilage-like properties by culturing neonatal porcine articular and growth plate chondrocytes on a hydrogel substrate and to examine the biochemical and histological characteristics of the resulting tissue. Design: Neonatal porcine epiphyseal and growth plate chondrocytes were cultured on poly(2-hydroxyethyl methacrylate) (polyHEMA)coated dishes to prevent their adherence to plastic. We previously described that this procedure allows the maintenance of the chondrocyte-specific phenotype for ≥8 months. Chondrocytes were isolated by successive enzymatic digestions and cultured at high density (>2.0×10 7 cells/ml) in DMEM with 10% FBS, 50 g/ml ascorbic acid, glutamine, vitamins, and antibiotics for up to 10 weeks on 60 mm plastic culture dishes coated with polyHEMA. The tissues produced during culture were studied histologically and biochemically and were examined for cellular proliferation employing 3 H-thymidine incorporation and for their collagen production employing biosynthetic labeling with 14 C-proline and Western blot with specific antibodies. The expression of relevant collagen genes was examined employing RT-PCR. Results: Within 24 h of culture, isolated chondrocytes organized into well-formed clusters and in 2 weeks formed structures with gross appearance and consistence similar to those of natural cartilage. The wet weight of the tissue formed in vitro increased six-fold during the 10-week period of study. Cell proliferation measured by the incorporation of 3 H-thymidine increased during the first 3 weeks and reached a plateau in subsequent weeks. Histological examination showed that the cultures contained rounded chondrocytes embedded in an abundant cartilaginous extracellular matrix. The cartilage formed contained large amounts of collagen and sulfated proteoglycans as examined by staining with Masson's Trichrome and Alcian blue, respectively. Deposition of calcium in the deeper layers of the tissue was demonstrated with the von Kossa stain. Western analyses with specific antibodies showed that type II collagen was present from the first week and progressively increased in the cultures, whereas type X collagen was first detected at 4 weeks and increased with length of culture. When chondrocytes isolated from the growth plate were included, small amounts of type I collagen were detected in the medium of cultured biomaterial as expected. Type III collagen was not detected by Western blot over the 10-week period. High levels of type II and type X collagen gene expression were demonstrated by RT-PCR. Conclusion: These studies demonstrate the production in vitro of cartilage-like tissue with similar morphological, histochemical and biochemical characteristics to those of natural growth plate cartilage. The cartilage generated in vitro has the potential to be used in reconstructive surgery and in joint resurfacing and restoration of skeletal defects.

Addition of hyaluronic acid improves cellular infiltration and promotes early-stage chondrogenesis in a collagen-based scaffold for cartilage tissue engineering

The response of mesenchymal stem cells (MSCs) to a matrix largely depends on the composition as well as the extrinsic mechanical and morphological properties of the substrate to which they adhere to.Collagen-glycosaminoglycan (CG) scaffolds have been extensively used in a range of tissue engineering applications with great success. This is due in part to the presence of the glycosaminoglycans (GAGs) in complementing the biofunctionality of collagen. In this context, the overall goal of this study was to investigate the effect of two GAG types: chondroitin sulphate (CS) and hyaluronic acid (HyA) on the mechanical and morphological characteristics of collagen-based scaffolds and subsequently on the differentiation of rat MSCs in vitro. Morphological characterisation revealed that the incorporation of HyA resulted in a significant reduction in scaffold mean pore size (93.9 µm) relative to collagen-CS (CCS) scaffolds (136.2 µm). In addition, the collagen-HyA (CHyA) scaffolds exhibited greater levels of MSC infiltration in comparison to the CCS scaffolds. Moreover, these CHyA scaffolds showed significant acceleration of early stage gene expression of SOX-9 (approximately 60-fold higher, p<0.01) and collagen type II (approximately 35-fold higher, p<0.01) as well as cartilage matrix production (7-fold higher sGAG content) in comparison to CCS scaffolds by day 14. Combining their ability to stimulate MSC migration and chondrogenesis in vitro, these CHyA scaffolds show great potential as appropriate matrices for promoting cartilage tissue repair.

Transplantation of chondrocytes seeded on collagen-based scaffold in cartilage defects in rabbits

Journal of Biomedical Materials Research Part A, 2005

Recent success in tissue engineering by restoring cartilage defects by transplanting autologous chondrocyte cells on a three-dimensional scaffold has prompted the improvement of this therapeutic strategy. Here we describe a new approach investigating the healing of rabbit cartilage by means of autologous chondrocytes seeded on a biomaterial made of an equine collagen type I-based scaffold. Full-thickness defects were created bilaterally in the weight-bearing surface of the medial femoral condyle of both femora of New Zealand male rabbits. The wounds were then repaired by using both chondrocytes seeded on the biomaterial and biomaterial alone. Controls were similarly treated but received either no treatment or implants of the delivery substance. Histological examination of the reconstructed tissues at 1, 3, 6, and 12 months after transplantation showed that at 1 and 3 months there was no formation of reconstructed tissue in any of the groups evaluated; after 6 months there was evidence of a newly regenerated tissue with some fibrocartilaginous features only in the group treated with biomaterial-seeded cells, and at 12 months a more organized tissue was evident in the same group. With regards to the group transplanted with biomaterial alone and the untreated control group, there was no evidence of new tissue production. These results advocate the use of this collagenbased scaffold for further in vivo studies on large size animals and, finally, in human clinical trials for the treatment of knee cartilage defects.

A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes

Biomaterials, 2010

The goal of this study was to determine material effects on cartilage regeneration for scaffolds with the same controlled architecture. The 3D polycaprolactone (PCL), poly (glycerol sebacate) (PGS), and poly (1,8 octanediol-co-citrate) (POC) scaffolds of the same design were physically characterized and tissue regeneration in terms of cell phenotype, cellular proliferation and differentiation, and matrix production were compared to find which material would be most optimal for cartilage regeneration in vitro. POC provided the best support for cartilage regeneration in terms of tissue ingrowth, matrix production, and relative mRNA expressions for chondrocyte differentiation (Col2/Col1). PGS was seen as the least favorable material for cartilage based on its relatively high de-differentiation (Col1), hypertrophic mRNA expression (Col10) and high matrix degradation (MMP13, MMP3) results. PCL still provided microenvironments suitable for cells to be active yet it seemed to cause de-differentiation (Col1) of chondrocytes inside the scaffold while many cells migrated out, growing cartilage outside the scaffold.

Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study

Journal of Orthopaedic Surgery and Research, 2008

Background Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. Methods PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 × 106cells/scaffold) and polymerized by dropping thrombin-calcium chloride (CaCl2) solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl)-2-, 5-diphenyltetrazolium-bromide (MTT) assay. Morphological observation, histology, immunohistochemistry (IHC), gene expression and sulphated-glycosaminoglycan (sGAG) analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM). Results Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG) in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further demonstrated by the expression of genes encoded for cartilage-specific markers, collagen type II and aggrecan core protein. Interestingly, suppression of cartilage dedifferentiation marker; collagen type I was observed after 2 and 3 weeks of in vitro culture. The sulphated-glycosaminoglycan (sGAG) production in fibrin/PLGA was significantly higher than in PLGA. Conclusion Fibrin/PLGA promotes early in vitro chondrogenesis of rabbit articular chondrocytes. This study suggests that fibrin/PLGA may serve as a potential cell delivery vehicle and a structural basis for in vitro tissue-engineered articular cartilage.

Engineered articular cartilage: influence of the scaffold on cell phenotype and proliferation

Journal of materials science. Materials in medicine, 2003

Articular cartilage defects do not heal. Biodegradable scaffolds have been studied for cartilage engineering in order to implant autologous chondrocytes and help cartilage repair. We tested some new collagen matrices differing in collagen type, origin, structure and methods of extraction and purification, and compared the behavior of human chondrocytes cultured on them. Human chondrocytes were grown for three weeks on four different equine type I collagen matrices, one type I, III porcine collagen matrix and one porcine type II collagen matrix. After 21 days, samples were subjected to histochemical, immunohistochemical and histomorphometric analysis to study phenotype expression and cell adhesion. At 7, 14 and 21 days cell proliferation was studied by incorporation of [3H]-thymidine. Our data evidence that the collagen type influences cell morphology, adhesion and growth; indeed, cellularity and rate of proliferation were significantly higher and cells were rounder on the collagen I...

Chondrogenic Derivatives of Embryonic Stem Cells Seeded into 3D Polycaprolactone Scaffolds Generated Cartilage TissueIn Vivo

Tissue Engineering Part A, 2008

In spite of recent scientific advances, treatment and repair of cartilage using tissue engineering techniques remains challenging. The major constraint is the limited proliferative capacity of mature autologous chondrocytes used in the tissue engineering approach. This problem can be addressed by using stem cells, which can self-renew with greater proliferative potential. Cartilage tissue engineering using adult mesenchymal stem cells derived from bone marrows has met with limited success. In this study we explored cartilage tissue generation from embryonic stem cells (ESCs). ESCs were induced to differentiate into chondroprogenitors, capable of proliferating and subsequently differentiating into cartilage-producing cells. The chondrogenic cells expressed chondrocyte-specific markers and deposited extracellular matrix proteins, proteoglycans. ESC-derived chondrogenic cells and polycaprolactone scaffolds seeded with these cells implanted in mice (129 SvImJ) generated cartilage tissue in vivo. Postimplant analysis of the retrieved tissues demonstrated cartilage-like tissue formation in 3-4 weeks. The cells of retrieved tissues also expressed the chondrocyte-specific marker collagen II. These findings suggest that ESCs can be used for tissue engineering and cultivation of cartilage tissues.