Identification and Validation of a Potent Dual Inhibitor of the P. falciparum M1 and M17 Aminopeptidases Using Virtual Screening (original) (raw)
Related papers
Bioinformation, 2014
Plasmodium falciparum alanine M1-aminopeptidase (PfA-M1) is a validated target for anti-malarial drug development. Presence of significant similarity between PfA-M1 and human M1-aminopeptidases, particularly within regions of enzyme active site leads to problem of non-specificity and off-target binding for known aminopeptidase inhibitors. Molecular docking based in silico screening approach for off-target binding has high potential but requires 3D-structure of all human M1-aminopeptidaes. Therefore, in the present study 3D structural models of seven human M1-aminopeptidases were developed. The robustness of docking parameters and quality of predicted human M1-aminopeptidases structural models was evaluated by stereochemical analysis and docking of their respective known inhibitors. The docking scores were in agreement with the inhibitory concentrations elucidated in enzyme assays of respective inhibitor enzyme combinations (r 2 ≈0.70). Further docking analysis of fifteen potential PfA-M1 inhibitors (virtual screening identified) showed that three compounds had less docking affinity for human M1-aminopeptidases as compared to PfA-M1. These three identified potential lead compounds can be validated with enzyme assays and used as a scaffold for designing of new compounds with increased specificity towards PfA-M1.
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2014
Plasmodium falciparum alanine M1-aminopeptidase (PfA-M1) is a validated target for anti-malarial drug development. Presence of significant similarity between PfA-M1 and human M1-aminopeptidases, particularly within regions of enzyme active site leads to problem of non-specificity and off-target binding for known aminopeptidase inhibitors. Molecular docking based in silico screening approach for off-target binding has high potential but requires 3D-structure of all human M1-aminopeptidaes. Therefore, in the present study 3D structural models of seven human M1-aminopeptidases were developed. The robustness of docking parameters and quality of predicted human M1-aminopeptidases structural models was evaluated by stereochemical analysis and docking of their respective known inhibitors. The docking scores were in agreement with the inhibitory concentrations elucidated in enzyme assays of respective inhibitor enzyme combinations (r 2 ≈0.70). Further docking analysis of fifteen potential PfA-M1 inhibitors (virtual screening identified) showed that three compounds had less docking affinity for human M1-aminopeptidases as compared to PfA-M1. These three identified potential lead compounds can be validated with enzyme assays and used as a scaffold for designing of new compounds with increased specificity towards PfA-M1.
Malaria is one of the major diseases of concern worldwide, especially in the African regions. According to a recent WHO report, 95% of deaths that occur due to malaria are in the African regions. Resistance to present antimalarial drugs is increasing rapidly and becoming a problem of concern. M17 Leucyl Aminopeptidase (PfM17LAP) and vacuolar Plasmepsins (PfPM) are two important enzymes involved in the haemoglobin degradation pathway of Plasmodium falciparum. PfM17LAP regulates the release of amino acids and PfPM mediates the conversion of haemoglobin proteins to oligopeptides. These enzymes thus play an essential role in the survival of malaria parasites inside the human body. In the present study, we used in-silico molecular docking, simulation and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) studies to find potential dual inhibitors of PfPM and PfM17LAP using the ChEMBL antimalarial library. Absorption, distribution, metabolism, excretion and toxicity (ADMET) profiling of the top ten ranked molecules was done using the BIOVIA Discovery Studio. The present investigation revealed that the compound CHEMBL426945 is stable in the binding site of both PfPM and PfM17LAP. In this study, we have reported novel dual-inhibitors that may act better than the present antimalarial drugs.
BMC structural biology, 2016
The Plasmodium falciparum M18 Aspartyl Aminopeptidase (PfM18AAP) is only aspartyl aminopeptidase which is found in the genome of P. falciparum and is essential for its survival. The PfM18AAP enzyme performs various functions in the parasite and the erythrocytic host such as hemoglobin digestion, erythrocyte invasion, parasite growth and parasite escape from the host cell. It is a valid target to develop antimalarial drugs. In the present work, we employed 3D QSAR modeling, pharmacophore modeling, and molecular docking to identify novel potent inhibitors that bind with M18AAP of P. falciparum. The PLSR QSAR model showed highest value for correlation coefficient r(2) (88 %) and predictive correlation coefficient (pred_r2) =0.6101 for external test set among all QSAR models. The pharmacophore modeling identified DHRR (one hydrogen donor, one hydrophobic group, and two aromatic rings) as an essential feature of PfM18AAP inhibitors. The combined approach of 3D QSAR, pharmacophore, and st...
Journal of Pharmaceutical Research International
We virtually design here new subnanomolar range antimalarial, inhibitors of plasmodium falciparum M1 Aminopeptidase (PfA-M1), by means of structure-based molecular design. We developed the complexation QSAR models from Hydroxamic Acid derivatives (AHO). A linear correlation was established between the computed Gibbs free energies of binding (GFE: ∆∆Gcom) and observed enzyme inhibition constants (Kiexp) for each training set pKiexp = −0.063×∆∆Gcom+ 8.003, R2 = 0.92. The predictive power of the QSAR model was validated with 3D-QSAR pharmacophore generation (PH4): pKiexp = 1.0289×pKipred − 0.155, R2 = 0.90. We then conducted a study on catalytic residues to exploit the different interactions (enzyme: inhibitor). Structural information from the models guided us in designing of a virtual combinatorial library (VCL) of more than 44 thousands AHOs. The PH4 screening retained 51 new and potent AHOs with predicted inhibitory potencies pKipre up to 13 times lower than that of AHO1 (pKiexp = 7...
Journal of vector borne diseases
Cysteine proteases (falcipains), a papain-family of enzymes of Plasmodium falciparum, are responsible for haemoglobin degradation and thus necessary for its survival during asexual life cycle phase inside the human red blood cells while remaining non-functional for the human body. Therefore, these can act as potential targets for designing antimalarial drugs. The P. falciparum cysteine proteases, falcipain-II and falcipain- III are the enzymes which initiate the haemoglobin degradation, therefore, have been selected as targets. In the present study, we have designed new leupeptin analogues and subjected to virtual screening using Glide at the active site cavity of falcipain-II and falcipain-III to select the best docked analogues on the basis of Glide score and also compare with the result of AutoDock. The proposed analogues can be synthesized and tested in vivo as future potent antimalarial drugs. Protein falcipain-II and falcipain-III together with bounds inhibitors epoxysuccinate...
Proceedings of the National Academy of Sciences, 2010
Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, Pf A-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the x-ray crystal structure of the monomeric Pf A-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here, we present the x-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with antimalarial activity. The six active sites of the Pf A-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to Pf A-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centers in these enzymes (two in Pf A-M17 and one in Pf A-M1) in both substrate and drug binding. Our detailed understanding of the Pf A-M1 and Pf A-M17 active sites now permits a rational approach in the development of a unique class of two-target and/or combination antimalarial therapy. drug design | malaria | protease | structural biology | neutral aminopeptidases
Frontiers in Pharmacology, 2022
We employed a comprehensive approach of target-based virtual high-throughput screening to find potential hits from the ZINC database of natural compounds against cysteine proteases falcipain-2 and falcipain-3 (FP2 and FP3). Molecular docking studies showed the initial hits showing high binding affinity and specificity toward FP2 were selected. Furthermore, the enzyme inhibition and surface plasmon resonance assays were performed which resulted in a compound ZINC12900664 (ST72) with potent inhibitory effects on purified FP2. ST72 exhibited strong growth inhibition of chloroquine-sensitive (3D7; EC 50 = 2.8 µM) and chloroquine-resistant (RKL-9; EC 50 = 6.7 µM) strains of Plasmodium falciparum. Stage-specific inhibition assays revealed a delayed and growth defect during parasite growth and development in parasites treated with ST72. Furthermore, ST72 significantly reduced parasite load and increased host survival in a murine model infected with Plasmodium berghei ANKA. No Evans blue staining in ST72 treatment indicated that ST72 mediated protection of blood-brain barrier integrity in mice infected with P. berghei. ST72 did not show any significant hemolysis or cytotoxicity against human HepG2 cells suggesting a good safety profile. Importantly, ST72 with CQ resulted in improved growth inhibitory activity than individual drugs in both in vitro and in vivo studies.
Journal of biomolecular screening, 2014
The target of this study, the PfM18 aspartyl aminopeptidase (PfM18AAP), is the only AAP present in the genome of the malaria parasite Plasmodium falciparum. PfM18AAP is a metallo-exopeptidase that exclusively cleaves N-terminal acidic amino acids glutamate and aspartate. It is expressed in parasite cytoplasm and may function in concert with other aminopeptidases in protein degradation, of, for example, hemoglobin. Previous antisense knockdown experiments identified a lethal phenotype associated with PfM18AAP, suggesting that it is a valid target for new antimalaria therapies. To identify inhibitors of PfM18AAP function, a fluorescence enzymatic assay was developed using recombinant PfM18AAP enzyme and a fluorogenic peptide substrate (H-Glu-NHMec). This was screened against the Molecular Libraries Probe Production Centers Network collection of ~292,000 compounds (the Molecular Libraries Small Molecule Repository). A cathepsin L1 (CTSL1) enzyme-based assay was developed and used as a ...
Structure-based Design of Novel Small-Molecule Inhibitors of Plasmodium falciparum
Journal of Chemical Information and Modeling, 2010
Malaria is endemic in most developing countries, with nearly 500 million cases estimated to occur each year. The need to design a new generation of antimalarial drugs that can combat the most drugresistant forms of the malarial parasite is well recognized. In this study, we wanted to develop inhibitors of key proteins that form the invasion machinery of the malarial parasite. A critical feature of host-cell invasion by apicomplexan parasites is the interaction between the carboxy terminal tail of myosin A (MyoA) and the myosin tail interacting protein (MTIP). Using the co-crystal structure of the Plasmodium knowlesi MTIP and the MyoA tail peptide as input to the hybrid structure-based virtual screening approach, we identified a series of small molecules as having the potential to inhibit MTIP-MyoA interactions. Of the initial fifteen compounds tested, a pyrazole-urea compound inhibited P. falciparum growth with an EC 50 value of 145 nM. We screened an additional 51 compounds belonging to the same chemical class and identified eight compounds with EC 50 values less than 400 nM. Interestingly, the compounds appeared to act at several stages of the parasite's life cycle to block growth and development. The pyrazole-urea compounds identified in this study could be effective antimalarial agents because they competitively inhibit a key protein-protein interaction between MTIP and MyoA responsible for the gliding motility and invasive features of the malarial parasite.