The dose comparison between the THOR and HFR epithermal neutron beams (original) (raw)

Reference dosimetry at the neutron capture therapy facility at Studsvik

Medical Physics, 2003

The purpose of this publication was to present and evaluate the methods for reference dosimetry in the epithermal neutron beam at the neutron capture therapy facility at Studsvik. Measurements were performed in a PMMA phantom and in air using ionization chambers and activation probes in order to calibrate the epithermal neutron beam. Appropriate beam-dependant calibration factors were determined using Monte Carlo methods for the detectors used in the present publication. Using the presented methodology, the photon, neutron and total absorbed dose to PMMA was determined with an estimated uncertainty of Ϯ5.0%, Ϯ25%, and Ϯ5.5% ͑2 SD͒, respectively. The uncertainty of the determination of the photon absorbed dose was comparable to the case in conventional radiotherapy, while the uncertainty of the neutron absorbed dose is much higher using the present methods. The thermal neutron group fluence, i.e., the neutron fluence in the energy interval 0-0.414 eV, was determined with an estimated uncertainty of Ϯ2.8% ͑2 SD͒, which is acceptable for dosimetry in epithermal neutron beams.

Neutron spectrometry and determination of neutron ambient dose equivalents in different LINAC radiotherapy rooms

Radiation Measurements, 2010

A project has been set up to study the effect on a radiotherapy patient of the neutrons produced around the LINAC accelerator head by photonuclear reactions induced by photons above w8 MeV. These neutrons may reach directly the patient, or they may interact with the surrounding materials until they become thermalised, scattering all over the treatment room and affecting the patient as well, contributing to peripheral dose. Spectrometry was performed with a calibrated and validated set of Bonner spheres at a point located at 50 cm from the isocenter, as well as at the place where a digital device for measuring neutrons, based on the upset of SRAM memories induced by thermal neutrons, is located inside the treatment room. Exposures have taken place in six LINAC accelerators with different energies (from 15 to 23 MV) with the aim of relating the spectrometer measurements with the readings of the digital device under various exposure and room geometry conditions. The final purpose of the project is to be able to relate, under any given treatment condition and room geometry, the readings of this digital device to patient neutron effective dose and peripheral dose in organs of interest. This would allow inferring the probability of developing second malignancies as a consequence of the treatment. Results indicate that unit neutron fluence spectra at 50 cm from the isocenter do not depend on accelerator characteristics, while spectra at the place of the digital device are strongly influenced by the treatment room geometry.

Monte Carlo study of neutron-ambient dose equivalent to patient in treatment room

Applied Radiation and Isotopes, 2016

This paper presents an analytical method for the calculation of the neutron ambient dose equivalent H* (10) regarding patients, whereby the different concrete types that are used in the surrounding walls of the treatment room are considered. This work has been performed according to a detailed simulation of the Varian 2300C/D linear accelerator head that is operated at 18 MV, and silver activation counter as a neutron detector, for which the Monte Carlo MCNPX 2.6 code is used, with and without the treatment room walls. The results show that, when compared to the neutrons that leak from the LINAC, both the scattered and thermal neutrons are the major factors that comprise the out-of field neutron dose. The scattering factors for the limonite-steel, magnetite-steel, and ordinary concretes have been calculated as 0.91 ± 0.09, 1.08 ± 0.10, and 0.371 ± 0.01, respectively, while the corresponding thermal factors are 34.22 ± 3.84, 23.44 ± 1.62, and 52.28 ± 1.99, respectively (both the scattering and thermal factors are for the isocenter region); moreover, the treatment room is composed of magnetite-steel and limonite-steel concretes, so the neutron doses to the patient are 1.79 times and 1.62 times greater than that from an ordinary concrete composition. The results also confirm that the scattering and thermal factors do not depend on the details of the chosen linear accelerator head model. It is anticipated that the results of the present work will be of great interest to the manufacturers of medical linear accelerators.

Neutron spectrometry and determination of neutron ambient doses in radiotherapy treatments under different exposure conditions

IFMBE proceedings, 2009

A project has been set up to study the effect on a radiotherapy patient of the neutrons produced around the LINAC accelerator head by photonuclear reactions induced by photons above w8 MeV. These neutrons may reach directly the patient, or they may interact with the surrounding materials until they become thermalised, scattering all over the treatment room and affecting the patient as well, contributing to peripheral dose. Spectrometry was performed with a calibrated and validated set of Bonner spheres at a point located at 50 cm from the isocenter, as well as at the place where a digital device for measuring neutrons, based on the upset of SRAM memories induced by thermal neutrons, is located inside the treatment room. Exposures have taken place in six LINAC accelerators with different energies (from 15 to 23 MV) with the aim of relating the spectrometer measurements with the readings of the digital device under various exposure and room geometry conditions. The final purpose of the project is to be able to relate, under any given treatment condition and room geometry, the readings of this digital device to patient neutron effective dose and peripheral dose in organs of interest. This would allow inferring the probability of developing second malignancies as a consequence of the treatment. Results indicate that unit neutron fluence spectra at 50 cm from the isocenter do not depend on accelerator characteristics, while spectra at the place of the digital device are strongly influenced by the treatment room geometry.

Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz

Acta Oncologica, 2010

To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the University of Mainz, Germany, it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma fi eld. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron fl ux measurements using gold foil activation and pin-diodes . Material and methods . When L-α -alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using FLUKA, a multipurpose Monte Carlo transport code. The pin-diode is augmented by a lithium fl uoride foil. This foil converts the neutrons into alpha and tritium particles which are products of the 7 Li(n, α ) 3 H-reaction. These particles are detected by the diode and their amount correlates to the neutron fl uence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fl uence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon fi eld and charged particle fi eld from secondary reactions can in principle be carried out in combination with MC-calculations for mixed radiation fi elds and the Hansen & Olsen alanine detector response model. With the acquired data about the background dose and charged particle spectrum, and with the acquired information of the neutron fl ux, we are capable of calculating the dose to the tissue. Conclusion . Monte Carlo simulation of the mixed neutron and gamma fi eld of the TRIGA Mainz is possible in order to characterize the neutron behavior in the thermal column. Currently we also speculate on sensitizing alanine to thermal neutrons by adding boron compounds.

Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy

Medical Physics, 2009

Neutrons are by-products of high-energy radiation therapy and a source of dose to normal tissues. Thus, the presence of neutrons increases a patient's risk of radiation-induced secondary cancer. Although neutrons have been thoroughly studied in air, little research has been focused on neutrons at depths in the patient where radiosensitive structures may exist, resulting in wide variations in neutron dose equivalents between studies. In this study, we characterized properties of neutrons produced during high-energy radiation therapy as a function of their depth in tissue and for different field sizes and different source-to-surface distances ͑SSD͒. We used a previously developed Monte Carlo model of an accelerator operated at 18 MV to calculate the neutron fluences, energy spectra, quality factors, and dose equivalents in air and in tissue at depths ranging from 0.1 to 25 cm. In conjunction with the sharply decreasing dose equivalent with increased depth in tissue, the authors found that the neutron energy spectrum changed drastically as a function of depth in tissue. The neutron fluence decreased gradually as the depth increased, while the average neutron energy decreased sharply with increasing depth until a depth of approximately 7.5 cm in tissue, after which it remained nearly constant. There was minimal variation in the quality factor as a function of depth. At a given depth in tissue, the neutron dose equivalent increased slightly with increasing field size and decreasing SSD; however, the percentage depth-dose equivalent curve remained constant outside the primary photon field. Because the neutron dose equivalent, fluence, and energy spectrum changed substantially with depth in tissue, we concluded that when the neutron dose equivalent is being determined at a depth within a patient, the spectrum and quality factor used should be appropriate for depth rather than for in-air conditions. Alternately, an appropriate percent depthdose equivalent curve should be used to correct the dose equivalent at the patient surface.

Dosimetry measurements at the fast neutron therapy facility in Seattle

Radiation Measurements, 2010

The fast neutron therapy facility at the University of Washington has been in routine clinical use for 25 years. 50.5 MeV protons produce neutrons in a beryllium target mounted on an isocentric gantry. Beam shaping is accomplished with a 40-leaf collimator. Dosimetry measurements for treatment planning and calibration are performed with tissue equivalent ion chambers. A layered phantom of alternating Solid Water Ò and Plastic Water Ò slabs has been developed for rapid dose verification measurements. The neutron field in the room has been used for radiation testing of electronic components.

Neutron Generator (HIRRAC) and Dosimetry Study

Journal of Radiation Research, 1999

Dosimetry studies have been made for neutrons from a neutron generator at Hiroshima University (HIRRAC) which is designed for radiobiological research. Neutrons in an energy range from 0.07 to 2.7 MeV are available for biological irradiations. The produced neutron energies were measured and evaluated by a 3 He-gas proportional counter. Energy spread was made certain to be small enough for radiobiological studies. Dose evaluations were performed by two different methods, namely use of tissue equivalent paired ionization chambers and activation of method with indium foils. Moreover, energy deposition spectra in small targets of tissue equivalent materials, so-called lineal energy spectrum, were also measured and are discussed. Specifications for biological irradiation are presented in terms of monoenergetic beam conditions, dose rates and deposited energy spectra.

Measurement of Neutron Flux and Gamma Dose Rate Distribution Inside a Water Phantom for Boron Neutron Capture Therapy Study at Dalat Research Reactor

Sains Malaysiana, 2019

Exposure dose rate to the tumor and surrounding cells during neutron beam irradiation in Boron Neutron Capture Therapy (BNCT) comes not only from heavy charged particles produced from the 10 B(n,α) 7 Li nuclear reaction, but also from neutron-induced reactions with other biological elements in living tissue, as well as from gamma rays leaked from the reactor core. At Dalat Research Reactor, Vietnam, the neutron and gamma dose rate distribution inside a water phantom were measured by using activation method and Thermoluminescent Dosimeter (TLD) detector, respectively. The results showed that effective thermal neutron dose rate along the center line of the water phantom had a maximum value of 479 mSv h-1 at 1 cm in phantom and then decreases rapidly to 4.87 mSv h-1 at 10 cm. The gamma dose rate along the center line of the water phantom also reach its maximum of 4.31 mSv h-1 at 1 cm depth and decreases to 1.16 mSv h-1 at 10 cm position. The maximum biological tumor dose rate was 1.74 Gy-eq h-1 , not high enough to satisfy the treatment requirement of brain tumors. However, the results of this work are important in supporting of BNCT study in the upcoming stages at Dalat Research Reactor.

Dosimetric comparison at FiR 1 using microdosimetry, ionisation chambers and computer simulation

Applied Radiation and Isotopes, 2004

Tissue equivalent proportional counter microdosimetry has been applied in the dosimetry of epithermal neutron beams as they can provide an independent and accurate method to determine gamma ray and neutron absorbed doses. Dosimetric comparison has been performed using a tissue equivalent proportional counter, dual ionisation chambers and DORT computer code at FiR 1 boron neutron capture therapy facility in Espoo, Finland. The three methods were applied to determine neutron and gamma ray absorbed doses at 25, 40, 60 and 120 mm depths along the beam centerline in a water-filled PMMA phantom. The determined absorbed doses were found to agree within the limits of the estimated uncertainties. r