Oblique geographic coordinates as covariates for digital soil mapping (original) (raw)

Soil Mapping Based on Globally Optimal Decision Trees and Digital Imitations of Traditional Approaches

ISPRS International Journal of Geo-Information

Most digital soil mapping (DSM) approaches aim at complete statistical model extraction. The value of the explicit rules of soil delineation formulated by soil-mapping experts is often underestimated. These rules can be used for expert testing of the notional consistency of soil maps, soil trend prediction, soil geography investigations, and other applications. We propose an approach that imitates traditional soil mapping by constructing compact globally optimal decision trees (EVTREE) for the covariates of traditionally used soil formation factor maps. We evaluated our approach by regional-scale soil mapping at a test site in the Belgorod region of Russia. The notional consistency and compactness of the decision trees created by EVTREE were found to be suitable for expert-based analysis and improvement. With a large sample set, the accuracy of the predictions was slightly lower for EVTREE (59%) than for CART (67%) and much lower than for Random Forest (87%). With smaller sample set...

Digital soil mapping: strategy for data pre-processing

Revista Brasileira de Ciência do Solo, 2012

The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT) models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.

Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions

PloS one, 2015

80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management-organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange c...