Fluorimetric assay of interaction of protein with ferrofluids (original) (raw)

Biocompatible and high-magnetically responsive iron oxide nanoparticles for protein loading

Journal of Physics and Chemistry of Solids, 2019

Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized in this work, featuring uncommonly high magnetization saturation values at room temperature for coated nanoparticles. They also show very low cytotoxicity and promising protein loading efficacy. The ratios of iron(III) acetylacetonate (precursor), benzyl ether (solvent) and oleylamine (surfactant) were changed relatively to those used in the thermal decomposition protocols reported in the literature, in order to enhance the magnetic response of the nanoparticles to an external magnet. The SPIONs were fully characterized in terms of their chemical composition, iron oxide phases, grain/particle sizes and magnetic behaviour. They are predominantly constituted by magnetite, with minor maghemite contributions, as observed by Mössbauer spectroscopy and X-ray diffraction data. The magnetization saturation at room temperature of the best SPIONs achieved 68 emu g-1 , which is relevant considering that it corresponds to ~10 nm sized nanoparticles, where interactions have some significance. This characteristic is mainly due to the high content of magnetite (93% of iron sites) in the nanoparticles and low aggregation provided by their organic coating. In

Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications

Science and technology of advanced materials, 2015

This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical in vivo or in vitro applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed.

Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review

Materials, 2022

Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent...

Preparation of iron oxide nanoparticles stabilized with biomolecules: Experimental and mechanistic issues

Acta Biomaterialia, 2013

Nanoparticles (NPs) with magnetic properties based on magnetite (Fe 3 O 4 , MAG) modified with oleic acid (OA), chitosan (CS) and bovine serum albumin (BSA) have been prepared. A versatile method of synthesis was employed, involving two steps: (i) co-precipitation of MAG; and (ii) nanoprecipitation of macromolecules on as-formed MAG NPs. Experimental variables have been explored to determine the set of conditions that ensure suitable properties of NPs in terms of their size, functionality and magnetic properties. It was found that the presence of OA in Fe +2 /Fe +3 solutions yields MAG NPs with lower aggregation levels, while increasing initial amounts of OA may change the capability of NPs to disperse in aqueous or organic media by modifying the stabilization mechanism. Incorporation of CS was verified through Fourier transform IR spectroscopy. This biopolymer stabilizes NPs by electrostatic repulsions leading to stable ferrofluids and minimal fraction of recoverable solid NPs. BSA was successfully added to NP formulations, increasing their functionality and probably their biocompatibility. In this case too stable ferrofluids were obtained, where BSA acts as a polyelectrolyte. From the proposed methodology it is possible to achieve a wide range of NPs magnetically active intended for several applications. The required properties may be obtained by varying experimental conditions.

Synthesis of Iron Oxide Magnetic Nanoparticles: Characterization and its Biomedical Application

Journal of Applied Sciences and Environmental Management

In the present time, Iron oxide magnetic nanoparticles (IOMNPs) have paid considerable attention due to their exclusive applications in terms of surface-to-volume ratio, superparamagnetism, high surface area, biosensor, bio-separation, catalysis, and biomedicine. Our goal was to synthesis iron oxide magnetic nanoparticles by chemical route technique. The preparation method had a very large effect on the size, shape, and surface chemistry of the magnetic nanoparticles including their applications. The iron chloride solution was prepared by mixing deionized water with iron chloride tetrahydrate. The synthesized powder was characterized by XRD, UV-vis, SEM, FT-IR, DLS, FL, and TGA techniques. Moreover, antibacterial activity was evaluated using the synthesized IOMNPs against Escherichia coli (A), Pseudomonas (B), Enterobacter (C), Staphylococcus aureus (D), and Bacillus subtilis (E) in the concentration of 0.1 mg and 0.5 mg. The results showed that Bacillus subtilis possess a higher an...