A merger between compatible but divergent genomes supports allopolyploidization in the Brassicaceae family (original) (raw)

Abstract

Hybridization and polyploidization are pivotal to plant evolution. Genetic crosses between distantly related species rarely occur in nature mainly due to reproductive barriers but how such hurdles can be overcome is largely unknown. xBrassicoraphanus is a fertile intergeneric allopolyploid synthesized between Brassica rapa and Raphanus sativus in the Brassicaceae family. Genomes of B. rapa and R. sativus are diverged enough to suppress synapsis formation between non-homologous progenitor chromosomes during meiosis, and we found that both genomes reside in the single nucleus of xBrassicoraphanus without genome loss or rearrangement. Expressions of syntenic orthologs identified in B. rapa and R. sativus were adjusted to a hybrid nuclear environment of xBrassicoraphanus, which necessitates reconfiguration of transcription network by rewiring cis-trans interactions. B. rapa coding sequences have a higher level of gene-body methylation than R. sativus, and such methylation asymmetry is m...

Gibum Yi hasn't uploaded this paper.

Let Gibum know you want this paper to be uploaded.

Ask for this paper to be uploaded.