[Wall shear stress in carotid artery and its role in the development of atherosclerosis] (original) (raw)
Related papers
Common carotid wall shear stress and carotid atherosclerosis in end-stage renal disease patients
Physiological research / Academia Scientiarum Bohemoslovaca
Decrease of arterial wall shear stress (WSS) is associated with higher probability of atherosclerotic plaque development in many disease conditions. End-stage renal diseases (ESRD) patients suffer from vascular disease frequently, but its nature differs from general population. This study was aimed at proving an association between common carotid wall shear stress and the presence of carotid bifurcation plaques in a group of ESRD patients. ESRD subjects, planned for the creation of a dialysis access and therapy were included. Wall shear rate (WSR) was used as a surrogate of WSS and was analyzed in the common carotid arteries by duplex ultrasonography. Intima media thickness (IMT) was measured at the same site. The presence/absence of carotid bifurcation plaques was recorded. The endothelial function was estimated by the levels of von Willebrand factor (vWf). 35 ESRD patients were included (19 females, 17 diabetics). Atherosclerotic plaque was present in 53 % of bifurcations. Wall sh...
In Vivo Wall Shear Stress Distribution in the Carotid Artery
Circulation: Cardiovascular Imaging, 2010
Background— The purpose of this study was to analyze the in vivo distribution of absolute wall shear stress (WSS abs ) and oscillatory shear index (OSI) in the carotid bifurcation and to evaluate its dependence on bifurcation geometry, the presence of internal carotid artery (ICA) stenosis, and recanalization therapy. Methods and Results— Time-resolved 3D blood flow was acquired with flow-sensitive 4D MRI in 64 normal carotid bifurcations and 17 carotid arteries with moderate ICA stenosis (48±6%) or after surgical recanalization. Among 64 normal arteries, atherogenic wall parameters were consistently concentrated in proximal bulb regions of the common (CCA) and internal (ICA) carotid arteries. The fraction of the carotid bulb exposed to atherosclerosis-prone wall parameters (low WSS abs below and high OSI above group-defined 20% and 10% thresholds) was correlated with the individual bifurcation geometry. Multiple regressions revealed significant ( P <0.01) relationships (β, 0.44 ...
Circulation Research, 1983
The distribution of nonstenosing, asymptomatic intimal plaques in 12 adult human carotid bifurcations obtained at autopsy was compared with the distribution of flow streamline patterns, flow velocity profiles, and shear stresses in corresponding scale models. The postmortem specimens were fixed while distended to restore normal in vivo length, diameter, and configuration. Angiograms were used to measure branch angles and diameters, and transverse histological sections were studied at five standard sampling levels. Intimal thickness was determined at 15 degrees intervals around the circumference of the vessel sections from contour tracings of images projected onto a digitizing plate. In the models, laser-Doppler anemometry was used to determine flow velocity profiles and shear stresses at levels corresponding to the standard specimen sampling sites under conditions of steady flow at Reynolds numbers of 400, 800, and 1200, and flow patterns were visualized by hydrogen bubble and dye-w...
Plaque Ulceration is Associated with High Shear Stress in Stenotic Carotid Bifurcations
Background and Purpose-Cerebrovascular events are related to atherosclerotic disease in the carotid arteries and are frequently caused by rupture of a vulnerable plaque. These ruptures are often observed at the upstream region of the plaque, where the wall shear stress (WSS) is considered to be highest. High WSS is known for its influence on many processes affecting tissue regression. Until now, there have been no serial studies showing the relationship between plaque rupture and WSS. Summary of Case-We investigated a serial MRI data set of a 67-year-old woman with a plaque in the carotid artery at baseline and an ulcer at 10-month follow up. The lumen, plaque components (lipid/necrotic core, intraplaque hemorrhage), and ulcer were segmented and the lumen contours at baseline were used for WSS calculation. Correlation of the change in plaque composition with the WSS at baseline showed that the ulcer was generated exclusively at the high WSS location. Conclusions-In this serial MRI study, we found plaque ulceration at the high WSS location of a protruding plaque in the carotid artery. Our data suggest that high WSS influences plaque vulnerability and therefore may become a potential parameter for predicting future events.
Biomechanics and Modeling in Mechanobiology, 2004
Finite element simulations of fluid-solid interactions were used to investigate inter-individual variations in flow dynamics and wall mechanics at the carotid artery bifurcation, and its effects on atherogenesis, in three healthy humans (normal volunteers: NV1, NV2, NV4). Subject-specific calculations were based on MR images of structural anatomy and ultrasound measurements of flow at domain boundaries. For all subjects, the largest contiguous region of low wall shear stress (WSS) occurred at the carotid bulb, WSS was high (6-10 Pa) at the apex, and a small localized region of WSS>10 Pa occurred close to the inner wall of the external carotid artery (ECA). NV2 and NV4 had a ''spot'' of low WSS distal to the bifurcation at the inner wall of the ECA. Low WSS patches in the common carotid artery (CCA) were contiguous with the carotid bulb low WSS region in NV1 and NV2, but not in NV4. In all three subjects, areas of high oscillatory shear index (OSI) were confined to regions of low WSS. Only NV4 exhibited high levels of OSI on the external adjoining wall of the ECA and CCA. For all subjects, the maximum wall shear stress temporal gradient (WSSTG) was highest at the flow divider (reaching 1,000 Pa/s), exceeding 300 Pa/s at the walls connecting the ECA and CCA, but remaining below 250 Pa/s outside of the ECA. In all subjects, (maximum principle) cyclic strain (CS) was greatest at the apex (NV1: 14%; NV2: 11%; NV4: 6%), and a second high CS region occurred at the ECA-CCA adjoining wall (NV1: 11%, NV2: 9%, NV4: 5%). Wall deformability was included in one simulation (NV2) to verify that it had little influence on the parameters studied. Location and magnitude of low WSS were similar, except for the apex (differences of up to 25%). Wall distensibility also influenced OSI, doubling it in most of the CCA, separating the single high OSI region of the carotid bulb into two smaller regions, and shrinking the ECA internal and external walls' high OSI regions. These observations provide further evidence that significant intra-subject variability exists in those factors thought to impact atherosclerosis.
Relation between wall shear stress and carotid artery wall thickening MRI versus CFD
Journal of biomechanics, 2016
Wall shear stress (WSS), a parameter associated with endothelial function, is calculated by computational fluid dynamics (CFD) or phase-contrast (PC) MRI measurements. Although CFD is common in WSS (WSSCFD) calculations, PC-MRI-based WSS (WSSMRI) is more favorable in population studies; since it is straightforward and less time consuming. However, it is not clear if WSSMRI and WSSCFD show similar associations with vascular pathology. Our aim was to test the associations between wall thickness (WT) of the carotid arteries and WSSMRI and WSSCFD. The subjects (n=14) with an asymptomatic carotid plaque who underwent MRI scans two times within 4 years of time were selected from the Rotterdam Study. We compared WSSCFD and WSSMRI at baseline and follow-up. Baseline WSSMRI and WSSCFD values were divided into 3 categories representing low, medium and high WSS tertiles. WT of each tertile was compared by a one-way ANOVA test. The WSSMRI and WSSCFD were 0.50±0.13Pa and 0.73±0.25Pa at baseline....
European Radiology Experimental, 2018
Background: To explore the possibility of creating three-dimensional (3D) estimation models for patient-specific wall thickness (WT) maps using patient-specific and cohort-averaged WT, wall shear stress (WSS), and vessel diameter maps in asymptomatic atherosclerotic carotid bifurcations. Methods: Twenty subjects (aged 75 ± 6 years [mean ± standard deviation], eight women) underwent a 1.5-T MRI examination. Non-gated 3D phase-contrast gradient-echo images and proton density-weighted echo-planar images were retrospectively assessed for WSS, diameter estimation, and WT measurements. Spearman's ρ and scatter plots were used to determine correlations between individual WT, WSS, and diameter maps. A bootstrapping technique was used to determine correlations between 3D cohort-averaged WT, WSS, and diameter maps. Linear regression between the cohort-averaged WT, WSS, and diameter maps was used to predict individual 3D WT. Results: Spearman's ρ averaged over the subjects was − 0.24 ± 0.18 (p < 0.001) and 0.07 ± 0.28 (p = 0.413) for WT versus WSS and for WT versus diameter relations, respectively. Cohort-averaged ρ, averaged over 1000 bootstraps, was − 0.56 (95% confidence interval [− 0.74,− 0.38]) for WT versus WSS and 0.23 (95% confidence interval [− 0.06, 0.52]) for WT versus diameter. Scatter plots did not reveal relationships between individual WT and WSS or between WT and diameter data. Linear relationships between these parameters became apparent after averaging over the cohort. Spearman's ρ between the original and predicted WT maps was 0.21 ± 0.22 (p < 0.001). Conclusions: With a combination of bootstrapping and cohort-averaging methods, 3D WT maps can be predicted from the individual 3D WSS and diameter maps. The methodology may help to elucidate pathological processes involving WSS in carotid atherosclerosis.
Cerebrovascular Diseases, 2009
Background and Purpose: Wall shear stress (WSS) is the frictional force exerted by the circulating blood on the endothelium. Low systolic WSS is identified as an atherosclerotic risk factor. Recently, also the importance of diastolic WSS has been described. Still, it is unknown whether diastolic WSS carries similar cardiovascular risk factors compared to systolic WSS. Methods: Of 379 subjects (70-82 years, 56% male) diastolic and systolic WSS in the internal carotid arteries was determined. Results: After adjustment for age and gender, diastolic blood pressure was associated with systolic WSS (p = 0.02). Body mass index was associated with diastolic WSS (p = 0.04). Smoking was associated with diastolic WSS (p = 0.05). Myocardial infarction was associated with both systolic WSS (p = 0.04) and diastolic WSS (p ! 0.01). No associations between cholesterol, HDL, LDL, triglycerides, history of diabetes, hypertension, angina pectoris, claudication, stroke, or any vascular disease were found with systolic or diastolic WSS. Conclusions: Our data indicates different cardiovascular risk factors for diastolic WSS compared to systolic WSS.
Carotid Plaque, Arterial Stiffness Gradient, and Remodeling in Hypertension
Hypertension, 2008
The analysis of plaque mechanics along the longitudinal axis (bending strain) may provide useful information because repetitive bending strain of an atherosclerotic plaque can fatigue the wall material and result in plaque rupture. Whether essential hypertension is associated with a specific pattern of bending strain has not yet been determined. The study included 92 patients with an atherosclerotic plaque on the common carotid artery: 66 patients with essential hypertension, either treated or not, and 26 normotensive patients. A novel noninvasive echotracking system (ArtLab; Esaote, The Netherlands) was used to measure intima-media thickness, diameter, and distensibility at 128 sites on a 4-cm-long carotid segment. Carotid plaque was either less elastic than adjacent carotid artery (inward strain) or more elastic (outward strain). Inward strain was more frequently associated with an inward plaque remodeling, whereas an outward strain was more frequently associated with an outer remodeling. In multivariate logistic regression analysis, patients with essential hypertension were more likely to exhibit an inward strain of carotid plaque (odds ratioϭ6.9 [1.4 to 34.9]; PϽ0.02), independently of 2 factors favoring inward strain: an outer remodeling (odds ratioϭ4.6 [1.7 to 13.4]; PϽ0.005) and the absence of renin-angiotensin system blockers (odds ratioϭ4.8 [1.1 to 20.4]; PϽ0.05). In conclusion, arterial wall material of hypertensive patients was less elastic at the site of the plaque than upstream, and carotid was inwardly strained in the zone affected by plaque. This may generate a high level of stress concentrations and fatigue, exposing the plaque to a greater risk of rupture. (Hypertension. 2008;52:729-736.) Key Words: carotid artery Ⅲ atherosclerotic plaque Ⅲ hypertension Ⅲ stiffness Ⅲ arterial remodeling Continuing medical education (CME) credit is available for this article. Go to http://cme.ahajournals.org to take the quiz.