Design and construction of a laser-based respiratory gating system for implementation of deep inspiration breathe hold technique in radiotherapy clinics (original) (raw)
Related papers
Journal of applied clinical medical physics, 2017
Deep inspiration breath-hold (DIBH) is a technique for treating left-sided breast cancer (LSBC). In modern radiotherapy, one of the main aims is to exclude the heart from the beam aperture with an individualized beam design for LSBC. A deep inhalation will raise the chest wall while the volume of the lungs increase, this will again push the heart away from the breast to be treated. There are a few commercial DIBH systems, both invasive and noninvasive. We present an alternative noninvasive DIBH system based upon an industrial laser distance measurer. This system can be installed in a treatment room at a low cost; it is very easy to use and requires limited amount of training for the personnel and the patient. The system is capable of measuring the position of the chest wall with high frequency and precision in real time. The patient views its breathing curve through video glasses, and gets instructions during the treatment session. The system is well tolerated by test subjects due t...
Recent Technological Advancements in Respiratory Gating Devices
Indonesian Journal of Cancer, 2023
Background: The occurrence of motion in the thoracoabdominal region during radiotherapy treatment is an inherent challenge affecting the accuracy of the radiation beam. To address this challenge, a margin is often incorporated to compensate for the motion, but it has been reported to have several limitations. Consequently, respiratory gating has emerged as an integrated feature within radiotherapy-related machines. This innovative approach is designed to overcome motion-related challenges, leading to a reduction in the required margin and an improvement in the accuracy of the radiation beam. Methods: This study reviews the literature published in English between 2012 to 2021 regarding breathing monitoring devices used in the clinical or research stage. Furthermore, articles published before 2000 were traced to strengthen the theories. Results: Several monitoring devices had been reported to have respiratory gating purposes, but some were not equipped for this function. Furthermore, these devices were often developed using non-contact equipment, such as lasers and cameras, to provide accurate and precise measurements. One of their key advantages is the lack of physical attachment to the patients, thereby preserving comfort. The development of respiratory gating devices had significant potential to enhance the quality of radiotherapy treatment. This was manifested through more effective tumor and organ treatment and reduced toxicity. These benefits had the potential to extend the life expectancy of patients with respiratory-related cancer. Conclusions: Based on the results, respiratory gating was an advantageous technique in radiotherapy treatment. The development of respiratory gating devices enhanced patient comfort and the effectiveness of treatment.
Medical Physics, 2012
To develop a passive gating system incorporating with the real-time position management (RPM) system for the gated radiotherapy. Methods: Passive breath gating (PBG) equipment, which consists of a breath-hold valve, a controller mechanism, a mouthpiece kit, and a supporting frame, was designed. A commercial real-time positioning management system was implemented to synchronize the target motion and radiation delivery on a linear accelerator with the patient's breathing cycle. The respiratory related target motion was investigated by using the RPM system for correlating the external markers with the internal target motion while using PBG for passively blocking patient's breathing. Six patients were enrolled in the preclinical feasibility and efficiency study of the PBG system. Results: PBG equipment was designed and fabricated. The PBG can be manually triggered or released to block or unblock patient's breathing. A clinical workflow was outlined to integrate the PBG with the RPM system. After implementing the RPM based PBG system, the breath-hold period can be prolonged to 15-25 s and the treatment delivery efficiency for each field can be improved by 200%-400%. The results from the six patients showed that the diaphragm motion caused by respiration was reduced to less than 3 mm and the position of the diaphragm was reproducible for difference gating periods. Conclusions: A RPM based PBG system was developed and implemented. With the new gating system, the patient's breath-hold time can be extended and a significant improvement in the treatment delivery efficiency can also be achieved. V
Low-cost respiratory motion tracking system
Medical Imaging 2008: Visualization, Image-guided Procedures, and Modeling, 2008
Lung cancer is the cause of more than 150,000 deaths annually in the United States. Early and accurate detection of lung tumors with Positron Emission Tomography has enhanced lung tumor diagnosis. However, respiratory motion during the imaging period of PET results in the reduction of accuracy of detection due to blurring of the images. Chest motion can serve as a surrogate for tracking the motion of the tumor. For tracking chest motion, an optical laser system was designed which tracks the motion of a patterned card placed on the chest by illuminating the pattern with two structured light sources, generating 8 positional markers. The position of markers is used to determine the vertical, translational, and rotational motion of the card. Information from the markers is used to decide whether the patient's breath is abnormal compared to their normal breathing pattern. The system is developed with an inexpensive web-camera and two low-cost laser pointers. The experiments were carried out using a dynamic phantom developed in-house, to simulate chest movement with different amplitudes and breathing periods. Motion of the phantom was tracked by the system developed and also by a pressure transducer for comparison. The studies showed a correlation of 96.6% between the respiratory tracking waveforms by the two systems, demonstrating the capability of the system. Unlike the pressure transducer method, the new system tracks motion in 3 dimensions. The developed system also demonstrates the ability to track a sliding motion of the patient in the direction parallel to the bed and provides the potential to stop the PET scan in case of such motion.
Estimation of the Real-time Respiratory Simulation System in CyberKnife Image-guided Radiosurgery
Journal of the Korean Physical Society, 2010
The purpose of this study was to evaluate the target accuracy according to the movement with respiration of an actual patient in a quantitative way by developing a real-time respiratory simulation system (RRSS), including a patient customized 3D moving phantom. The real-time respiratory simulation system (RRSS) consists of two robots in order to implement both the movement of body surfaces and the movement of internal organs caused by respiration. The quantitative evaluation for the 3D movement of the RRSS was performed using a real-time laser displacement sensor for each axis. The average difference in the static movement of the RRSS was about 0.01 ∼ 0.06 mm. Also, in the evaluation of the dynamic movement by producing a formalized sine wave with the phase of four seconds per cycle, the difference between the measured and the calculated values for each cycle length in the robot that was in charge of body surfaces and the robot that was in charge of the movement of internal tumors showed 0.10 ∼ 0.55 seconds, and the correlation coefficients between the calculated and the measured values were 0.998 ∼ 0.999. The differences between the maximum and the minimum amplitudes were 0.01 ∼ 0.06 mm, and the reproducibility was within ±0.5 mm. In the case of the application and non-application of respiration, the target errors were −0.05 ∼ 1.05 mm and −0.13 ∼ 0.74 mm, respectively, and the entire target errors were 1.30 mm Estimate of the Real-Time Respiratory Simulation System in CyberKnife · · · -Chul Kee Min et al.
Physics in Medicine and Biology, 2006
Real-time knowledge of intra-fraction motion, such as respiration, is essential for four-dimensional (4D) radiotherapy. Surrogate-based and internal-fiducialbased methods may suffer from one or many drawbacks such as false correlation, being invasive, delivering extra patient radiation, and requiring complicated hardware and software development and implementation. In this paper we develop a simple non-surrogate, non-invasive method to monitor respiratory motion during radiotherapy treatments in real time. This method directly utilizes the treatment beam and thus imposes no additional radiation to the patient. The method requires a pre-treatment 4DCT and a real-time detector system. The method combines off-line processes with on-line processes. The off-line processes include 4DCT imaging and pre-calculating detector signals at each phase of the 4DCT based on the planned fluence map and the detector response function. The on-line processes include measuring detector signal from the treatment beam, and correlating the measured detector signal with the pre-calculated signals. The respiration phase is determined as the position of peak correlation. We tested our method with extensive simulations based on a TomoTherapy machine and a 4DCT of a lung cancer patient. Three types of simulations were implemented to mimic the clinical situations. Each type of simulation used three different TomoTherapy delivery sinograms, each with 800 to 1000 projections, as input fluences. Three arbitrary breathing patterns were simulated and two dose levels, 2 Gy/fraction and 2 cGy/fraction, were used for simulations to study the robustness of this method against detector quantum noise. The algorithm was used to determine the breathing phases and this result was compared with the simulated breathing patterns. For the 2 Gy/fraction simulations, the respiration phases were accurately determined within one phase error in real time for most projections of the treatment, except for a few projections at the start and end of the treatment in which beam
Low-cost respiratory motion tracking system
2008
Lung cancer is the cause of more than 150,000 deaths annually in the United States. Early and accurate detection of lung tumors with Positron Emission Tomography has enhanced lung tumor diagnosis. However, respiratory motion during the imaging period of PET results in the reduction of accuracy of detection due to blurring of the images. Chest motion can serve as a surrogate for tracking the motion of the tumor. For tracking chest motion, an optical laser system was designed which tracks the motion of a patterned card placed on the chest by illuminating the pattern with two structured light sources, generating 8 positional markers. The position of markers is used to determine the vertical, translational, and rotational motion of the card. Information from the markers is used to decide whether the patient's breath is abnormal compared to their normal breathing pattern. The system is developed with an inexpensive web-camera and two low-cost laser pointers. The experiments were carried out using a dynamic phantom developed in-house, to simulate chest movement with different amplitudes and breathing periods. Motion of the phantom was tracked by the system developed and also by a pressure transducer for comparison. The studies showed a correlation of 96.6% between the respiratory tracking waveforms by the two systems, demonstrating the capability of the system. Unlike the pressure transducer method, the new system tracks motion in 3 dimensions. The developed system also demonstrates the ability to track a sliding motion of the patient in the direction parallel to the bed and provides the potential to stop the PET scan in case of such motion.
Journal of applied clinical medical physics, 2016
Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axi...
The Open Electrical & Electronic Engineering Journal
The survival of patients submitted to Intensive Care Unit is often related to the mechanical ventilation, which makes up for serious respiratory insufficiencies but can also become a lethal health risk. To decrease these risks, the respiratory cycle has to be continuously monitored and a real-time suitable setting of the ventilator is required, in order to realize natural breathing similar conditions. In this paper we propose a microcontroller-based digital electronic device, designed and realized with reference to the most advanced and reliable electronic technologies, oriented to the monitoring of the respiratory cycle and the relevant ventilator setting. Moreover, the device allows the effective auscultation, the accurate processing and the detailed visualization (temporal and frequency graphs) of any lung sound. Then, it is suitable for the continuous real-time monitoring of breathing functions, resulting also very useful to diagnose respiratory pathologies.
Progress in Medical Physics
This study aimed to develop a breath control training system for breath-hold technique and respiratory-gated radiation therapy wherein the patients can learn breath-hold techniques in their convenient environment. Methods: The breath control training system comprises a sensor device and software. The sensor device uses a loadcell sensor and an adjustable strap around the chest to acquire respiratory signals. The device connects via Bluetooth to a computer where the software is installed. The software visualizes the respiratory signal in near real-time with a graph. The developed system can signal patients through visual (software), auditory (buzzer), and tactile (vibrator) stimulation when breath-holding starts. A motion phantom was used to test the basic functions of the developed breath control training system. The relative standard deviation of the maxima of the emulated free breathing data was calculated. Moreover, a relative standard deviation of a breath-holding region was calculated for the simulated breath-holding data. Results: The average force of the maxima was 487.71 N, and the relative standard deviation was 4.8%, while the average force of the breath hold region was 398.5 N, and the relative standard deviation was 1.8%. The data acquired through the sensor was consistent with the motion created by the motion phantom. Conclusions: We have developed a breath control training system comprising a sensor device and software that allow patients to learn breath-hold techniques in their convenient environment.