Clostridium difficile toxin B is an inflammatory enterotoxin in human intestine* 1 (original) (raw)

Clostridium difficile toxin B is an inflammatory enterotoxin in human intestine

Gastroenterology, 2003

Background & Aims: Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis, diseases afflicting millions of people each year. Although C. difficile releases 2 structurally similar exotoxins, toxin A and toxin B, animal experiments suggest that only toxin A mediates diarrhea and enterocolitis. However, toxin A-negative/toxin B-positive strains of C. difficile recently were isolated from patients with antibiotic-associated diarrhea and colitis, indicating that toxin B also may be pathogenic in humans. Methods: Here we used subcutaneously transplanted human intestinal xenografts in immunodeficient mice to generate a chimeric animal model for C. difficile toxin-induced pathology of human intestine. Results: We found that intraluminal toxin B, like equivalent concentrations of toxin A, induced intestinal epithelial cell damage, increased mucosal permeability, stimulated interleukin (IL)-8 synthesis, and caused an acute inflammatory response characterized by neutrophil recruitment and tissue damage. Laser capture microdissection and real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) showed that intestinal epithelial cell-specific IL-8 gene expression also was increased significantly after luminal exposure to C. difficile toxins in vivo.

Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects

Toxins, 2016

Clostridium difficile infection (CDI) has significant clinical impact especially on the elderly and/or immunocompromised patients. The pathogenicity of Clostridium difficile is mainly mediated by two exotoxins: toxin A (TcdA) and toxin B (TcdB). These toxins primarily disrupt the cytoskeletal structure and the tight junctions of target cells causing cell rounding and ultimately cell death. Detectable C. difficile toxemia is strongly associated with fulminant disease. However, besides the well-known intestinal damage, recent animal and in vitro studies have suggested a more far-reaching role for these toxins activity including cardiac, renal, and neurologic impairment. The creation of C. difficile strains with mutations in the genes encoding toxin A and B indicate that toxin B plays a major role in overall CDI pathogenesis. Novel insights, such as the role of a regulator protein (TcdE) on toxin production and binding interactions between albumin and C. difficile toxins, have recently been discovered and will be described. Our review focuses on the toxin-mediated pathogenic processes of CDI with an emphasis on recent studies.

Clostridium difficile toxin B is more potent than toxin A in damaging human colonic epithelium in vitro

Journal of Clinical Investigation, 1995

Toxin A but not toxin B, appears to mediate intestinal damage in animal models of Clostridium difficile enteritis. The purpose of this study was to investigate the electrophysiologic and morphologic effects of purified C. difficile toxins A and B on human colonic mucosa in Ussing chambers. Luminal exposure of tissues to 16-65 nM of toxin A and 0.2-29 nM of toxin B for 5 h caused dose-dependent epithelial damage. Potential difference, short-circuit current and resistance decreased by 76, 58, and 46%, respectively, with 32 nM of toxin A and by 76, 55, and 47%, respectively, with 3 nM of toxin B, when compared with baseline (P < 0.05).

In Vivo Physiological and Transcriptional Profiling Reveals Host Responses to Clostridium difficile Toxin A and Toxin B

Infection and Immunity, 2013

ABSTRACTToxin A (TcdA) and toxin B (TcdB) ofClostridium difficilecause gross pathological changes (e.g., inflammation, secretion, and diarrhea) in the infected host, yet the molecular and cellular pathways leading to observed host responses are poorly understood. To address this gap, we evaluated the effects of single doses of TcdA and/or TcdB injected into the ceca of mice, and several endpoints were analyzed, including tissue pathology, neutrophil infiltration, epithelial-layer gene expression, chemokine levels, and blood cell counts, 2, 6, and 16 h after injection. In addition to confirming TcdA's gross pathological effects, we found that both TcdA and TcdB resulted in neutrophil infiltration. Bioinformatics analyses identified altered expression of genes associated with the metabolism of lipids, fatty acids, and detoxification; small GTPase activity; and immune function and inflammation. Further analysis revealed transient expression of several chemokines (e.g.,Cxcl1andCxcl2...

Clostridium difficile Toxins: Mechanism of Action and Role in Disease

Clinical Microbiology Reviews, 2005

SUMMARY As the leading cause of hospital-acquired diarrhea, Clostridium difficile colonizes the large bowel of patients undergoing antibiotic therapy and produces two toxins, which cause notable disease pathologies. These two toxins, TcdA and TcdB, are encoded on a pathogenicity locus along with negative and positive regulators of their expression. Following expression and release from the bacterium, TcdA and TcdB translocate to the cytosol of target cells and inactivate small GTP-binding proteins, which include Rho, Rac, and Cdc42. Inactivation of these substrates occurs through monoglucosylation of a single reactive threonine, which lies within the effector-binding loop and coordinates a divalent cation critical to binding GTP. By glucosylating small GTPases, TcdA and TcdB cause actin condensation and cell rounding, which is followed by death of the cell. TcdA elicits effects primarily within the intestinal epithelium, while TcdB has a broader cell tropism. Important advances in t...

Clostridium difficile Toxin A Induces Intestinal Epithelial Cell Apoptosis and Damage: Role of Gln and Ala-Gln in Toxin A Effects

Digestive Diseases and Sciences, 2005

The aim of this study was to investigate the effect of Clostridium difficile toxin A (TxA) on intestinal epithelial cell migration, apoptosis, and transepithelial resistance and to evaluate the effect of glutamine (Gln) and its stable derivative, alanyl-glutamine (Ala-Gln), on TxA-induced damage. Migration was measured in rat intestinal epithelial cells (IEC-6) 6 and 24 hr after a razor scrape of the cell monolayer. Cell proliferation was indirectly measured utilizing the tetrazolium salt WST-1. The cells were incubated with TxA (1-100 ng/ml) in medium without Gln or medium containing Gln or Ala-Gln (1-30 mM). Apoptosis was quantified in IEC-6 cells using annexin V assay. Transepithelial resistance was measured using an epithelial voltohmmeter across T84 cells seeded on a transwell filter. TxA-induced a dose-dependent reduction of migration and also caused dose and time-dependent apoptosis in IEC-6 cells. Gln and Aln-Gln significantly enhanced IEC-6 cell migration and proliferation. Gln and Ala-Gln also prevented the inhibition of migration, apoptosis, and the initial drop in transepithelial resistance induced by TxA. In conclusion, both peptides reduced toxin-induced epithelial damage and thus might play an adjunctive role in C. difficile-induced colitis therapy.