Possibilistic approach for biclustering microarray data (original) (raw)
2007, Computers in Biology and Medicine
Biclustering has emerged as an important method for analyzing gene expression data from microarray technology. It allows to identify groups of genes which behave similarly under a subset of conditions. As a gene may play more than one biological role in conjunction with distinct groups of genes, non-exclusive biclustering algorithms are required. In this paper we propose a new method to obtain potentially-overlapping biclusters, the Possibilistic Spectral Biclustering algorithm (PSB), based on Fuzzy Technology and Spectral Clustering. We tested our method on S. cerevisiae cell cycle expression data and on a human cancer dataset, validating the obtained biclusters using known classifications of conditions and GO Term Finder for functional annotations of genes. Results are available at ଁ This work has been carried out as part of projects TIC-640 of J.A.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.