Whole-organism transcriptomic analysis provides mechanistic insight into the acute toxicity of emamectin benzoate in Daphnia magna (original) (raw)
Abstract
Emamectin benzoate (EMB) is an anti-sea lice chemical widely used in the aquaculture that may also unintentionally affect non-target crustaceans in the environment. Although the adverse effects of this compound are well documented in various species, the full modes of action (MoAs) are still not well characterized. The current study was therefore conducted to characterize the MoAs of EMB and link perturbations of key toxicological pathways to adverse effects in the model freshwater crustacean Daphnia magna. Effects on molting and survival were determined after 48h exposure to EMB, whereas global transcriptional changes and the ecdysone receptor (EcR) binding potency was determined to characterize the MoA. The results showed that the molting frequency and survival of D. magna decreased in a concentration-dependent manner, and the observed changes could not be attributed to direct interactions with the EcR. Major MoAs such as activation of glutamate-gated chloride channels and gamma-a...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (83)
- Westcott, J. D.; Hammell, K. L.; Burka, J. F., Sea lice treatments, management practices and sea lice sampling methods on Atlantic salmon farms in the Bay of Fundy, New Brunswick, Canada. Aquac. Res. 2004, 35, (8), 784-792.
- Horsberg, T. E., Avermectin use in aquaculture. Curr. Pharm. Biotechnol. 2012, 13, (6), 1095-102.
- Stone, J.; Sutherland, I. H.; Sommerville, C.; Richards, R. H.; Varma, K. J., Commercial trials using emamectin benzoate to control sea lice Lepeophtheirus salmonis infestations in Atlantic salmon Salmo salar. Dis. Aquat. Organ. 2000, 41, (2), 141-9.
- Roy, W. J.; Sutherland, I. H.; Rodger, H. D. M.; Varma, K. J., Tolerance of Atlantic salmon, Salmo salar L., and rainbow trout, Oncorhynchus mykiss (Walbaum), to emamectin benzoate, a new orally administered treatment for sea lice. Aquaculture 2000, 184, (1-2), 19-29.
- Costello, M. J., The global economic cost of sea lice to the salmonid farming industry. J Fish Dis 2009, 32, (1), 115-8.
- NIPH Increased use of medicines in Norwegian fish farming. http://www.fhi.no/artikler/?id=109432 (June 10),
- DFO, Use of SLICEĀ®. In Fisheries and Oceans Canada: http://www.pac.dfo-mpo.gc.ca/aquaculture/reporting-rapports/health-sante/slice-eng.html, 2016.
- SEPA, Sealice in-feed treatment residues. In Scottish Environment Protection Agency: http://aquaculture.scotland.gov.uk/data/sealice\_in\_feed\_treatment\_residues.aspx, 2016.
- Aaen, S. M.; Helgesen, K. O.; Bakke, M. J.; Kaur, K.; Horsberg, T. E., Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol. 2015, 31, (2), 72-81.
- Waddy, S. L.; Burridge, L. E.; Hamilton, M. N.; Mercer, S. M., Preliminary results on the response of the American lobster to emamectin benzoate, the active ingredient in slice (R). In Aquaculture Canada 2001: Moving Forward through Partnerships, Hendry, C. I.; McGladdery, S. E., Eds. Aquaculture Assoc Canada: Saint Andrews, 2002; pp 56-59.
- Waddy, S. L.; Burridge, L. E.; Hamilton, M. N.; Mercer, S. M.; Aiken, D. E.; Haya, K., Emamectin benzoate induces molting in American lobster, Homarus americanus. Can. J. Fish. Aquat. Sci. 2002, 59, (7), 1096-1099.
- Waddy, S. L.; Hamilton, M. N.; Burridge, L. E.; Mercer, S. M.; Aiken, D. E.; Haya, K., Molting response of female lobsters (Homarus americanus) to emamectin benzoate varies with reproductive stage. In Aquaculture Canada 2002, Henry, C. I., Ed. Aquaculture Assoc Canada: Saint Andrews, 2003; pp 75-77.
- Waddy, S. L.; Merritt, V. A.; Hamilton-Gibson, M. N.; Aiken, D. E., Effect of emamectin benzoate on the molt cycle of ovigerous American lobsters Homarus americanus is influenced by the dosing regimen. Aquat. Biol. 2010, 11, (1), 47-52.
- Waddy, S. L.; Merritt, V. A.; Hamilton-Gibson, M. N.; Aiken, D. E.; Burridge, L. E., Relationship between dose of emamectin benzoate and molting response of ovigerous American lobsters (Homarus americanus). Ecotoxicol. Environ. Saf. 2007, 67, (1), 95-99.
- Burridge, L. E.; Hamilton, N.; Waddy, S. L.; Haya, K.; Mercer, S. M.; Greenhalgh, R.; Tauber, R.; Radecki, S. V.; Crouch, L. S.; Wislocki, P. G.; Endris, R. G., Acute toxicity of emamectin benzoate (SLICE (TM)) in fish feed to American lobster, Homarus americanus. Aquac. Res. 2004, 35, (8), 713-722.
- Veldhoen, N.; Ikonomou, M. G.; Buday, C.; Jordan, J.; Rehaume, V.; Cabecinha, M.; Dubetz, C.; Chamberlain, J.; Pittroff, S.; Vallee, K.; van Aggelen, G.; Helbing, C. C., Biological effects of the anti-parasitic chemotherapeutant emamectin benzoate on a non-target crustacean, the spot prawn (Pandalus platyceros Brandt, 1851) under laboratory conditions. Aquat. Toxicol. 2012, 108, 94-105.
- Wolstenholme, A. J., Recent progress in understanding the interaction between avermectins and ligand-gated ion channels: putting the pests to sleep. Invert. Neurosci. 2010, 10, (1), 5-10.
- Wolstenholme, A. J.; Rogers, A. T., Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology 2005, 131 Suppl, S85-95.
- Lumaret, J. P.; Errouissi, F.; Floate, K.; Rombke, J.; Wardhaugh, K., A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr. Pharm. Biotechnol. 2012, 13, (6), 1004-60.
- Tatarazako, N.; Oda, S., The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology 2007, 16, (1), 197-203.
- Song, Y.; Salbu, B.; Teien, H. C.; Heier, L. S.; Rosseland, B. O.; Hogasen, T.; Tollefsen, K. E., Hepatic transcriptomic profiling reveals early toxicological mechanisms of uranium in Atlantic salmon (Salmo salar). BMC Genomics 2014, 15, 694.
- Kato, Y.; Kobayashi, K.; Oda, S.; Tatarazako, N.; Watanabe, H.; Iguchi, T., Cloning and characterization of the ecdysone receptor and ultraspiracle protein from the water flea Daphnia magna. J Endocrinol 2007, 193, (1), 183-94.
- Jordao, R.; Garreta, E.; Campos, B.; Lemos, M. F. L.; Soares, A. M. V. M.; Tauler, R.; Barata, C., Compounds altering fat storage in Daphnia magna. Sci. Total Environ. 2016, 545, 127-136.
- Tariq, S. R.; Rafique, N.; Kiran, S.; Khan, A. M., Photo-induced degradation of emamectin benzoate: effect of iron amendments and solvent system. Environmental Earth Sciences 2014, 72, (4), 983-988.
- Toumi, H.; Boumaiza, M.; Millet, M.; Radetski, C. M.; Camara, B. I.; Felten, V.; Ferard, J. F., Investigation of differences in sensitivity between 3 strains of Daphnia magna (crustacean Cladocera) exposed to malathion (organophosphorous pesticide). Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes 2015, 50, (1), 34-44.
- Oda, S.; Tatarazako, N.; Dorgerloh, M.; Johnson, R. D.; Kusk, K. O.; Leverett, D.; Marchini, S.; Nakari, T.; Williams, T.; Iguchi, T., Strain difference in sensitivity to 3,4-dichloroaniline and insect growth regulator, fenoxycarb, in Daphnia magna. Ecotoxicol. Environ. Saf. 2007, 67, (3), 399-405.
- Willis, K. J.; Ling, N., The toxicity of emamectin benzoate, an aquaculture pesticide, to planktonic marine copepods. Aquaculture 2003, 221, (1-4), 289-297.
- Calabrese, E. J., Hormesis: principles and applications. Homeopathy 2015, 104, (2), 69-82.
- Dupuis, J. P.; Bazelot, M.; Barbara, G. S.; Paute, S.; Gauthier, M.; Raymond-Delpech, V., Homomeric RDL and Heteromeric RDL/LCCH3
- GABA Receptors in the Honeybee Antennal Lobes: Two Candidates for Inhibitory Transmission in Olfactory Processing. J. Neurophysiol. 2010, 103, (1), 458-468.
- Brown, K. M.; Roy, K. K.; Hockerman, G. H.; Doerksen, R. J.; Colby, D. A., Activation of the gamma-aminobutyric acid type B (GABA(B)) receptor by agonists and positive allosteric modulators. J. Med. Chem. 2015, 58, (16), 6336-47.
- Carmichael, S. N.; Bron, J. E.; Taggart, J. B.; Ireland, J. H.; Bekaert, M.; Burgess, S. T. G.; Skuce, P. J.; Nisbet, A. J.; Gharbi, K.; Sturm, A., Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression. BMC Genomics 2013, 14, 408.
- Pang, S.; Qi, S. Z.; Ran, Z. J.; Song, X. Y.; Li, X. F.; Wang, C. J.; Duan, L. S., Synergistic effect of gamma-aminobutyric acid with avermectin on Bombyx mori. J Food Agric Environ 2013, 11, (1), 1022-1024.
- Salat, K.; Kulig, K., GABA transporters as targets for new drugs. Future Med. Chem. 2011, 3, (2), 211-222.
- Parviz, M.; Vogel, K.; Gibson, K. M.; Pearl, P. L., Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies. J Pediatr Epilepsy 2014, 3, (4), 217-227.
- Sumiya, E.; Ogino, Y.; Miyakawa, H.; Hiruta, C.; Toyota, K.; Miyagawa, S.; Iguchi, T., Roles of ecdysteroids for progression of reproductive cycle in the fresh water crustacean Daphnia magna. Front Zool 2014, 11, 60.
- Zhou, X. F.; Zhou, B. H.; Truman, J. W.; Riddiford, L. M., Overexpression of broad: a new insight into its role in the Drosophila prothoracic gland cells. J. Exp. Biol. 2004, 207, (7), 1151-1161.
- Lavorgna, G.; Karim, F. D.; Thummel, C. S.; Wu, C., Potential role for a FTZ-F1 steroid receptor superfamily member in the control of Drosophila metamorphosis. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, (7), 3004-3008.
- Mykles, D. L., Ecdysteroid metabolism in crustaceans. J. Steroid Biochem. Mol. Biol. 2011, 127, (3-5), 196-203.
- Chang, E. S.; Mykles, D. L., Regulation of crustacean molting: A review and our perspectives. Gen. Comp. Endocrinol. 2011, 172, (3), 323-330.
- Covi, J. A.; Chang, E. S.; Mykles, D. L., Neuropeptide signaling mechanisms in crustacean and insect molting glands. Invertebr. Reprod. Dev. 2012, 56, (1), 33-49.
- Sarojini, R.; Nagabhushanam, R.; Fingerman, M., New technology for enhancing reproductive maturation in economically important Crustacea for aquaculture. In Recent advances in marine biotechnology. Volume 4: Aquaculture, Part A seaweeds and invertebrates., Fingerman, M.; Nagabhushanam, R., Eds. Science Publishers, Inc.: Enfield, New Hampshire, 2000; pp 177-194.
- Mykles, D. L.; Adams, M. E.; Gade, G.; Lange, A. B.; Marco, H. G.; Orchard, I., Neuropeptide Action in Insects and Crustaceans. Physiol. Biochem. Zool. 2010, 83, (5), 836-846.
- Zitnan, D.; Adams, M. E., Neuroendocrine regulation of ecdysis. In Insect Endocrinology, Gilbert, L. I., Ed. Academic Press: Lodon, UK, 2012; pp 253-309.
- Sumiya, E.; Ogino, Y.; Toyota, K.; Miyakawa, H.; Miyagawa, S.; Iguchi, T., Neverland regulates embryonic moltings through the regulation of ecdysteroid synthesis in the water flea Daphnia magna, and may thus act as a target for chemical disruption of molting. J. Appl. Toxicol. 2016, 36, (11), 1476-85.
- Huang, K. Z.; Fingar, D. C., Growing knowledge of the mTOR signaling network. Semin. Cell Dev. Biol. 2014, 36, 79-90.
- Meyer, J. N.; Leung, M. C. K.; Rooney, J. P.; Sendoel, A.; Hengartner, M. O.; Kisby, G. E.; Bess, A. S., Mitochondria as a Target of Environmental Toxicants. Toxicol. Sci. 2013, 134, (1), 1-17.
- Lemasters, J. J.; Theruvath, T. P.; Zhong, Z.; Nieminen, A. L., Mitochondrial calcium and the permeability transition in cell death. Biochimica Et Biophysica Acta-Bioenergetics 2009, 1787, (11), 1395-1401.
- Karls, A.; Mynlieff, M., GABA(B) receptors couple to G alpha(q) to mediate increases in voltage-dependent calcium current during development. J. Neurochem. 2015, 135, (1), 88-100.
- Teixeira, V.; Costa, V., Unraveling the role of the Target of Rapamycin signaling in sphingolipid metabolism. Prog. Lipid Res. 2016, 61, 109-133.
- Hunt, M. C.; Tillander, V.; Alexson, S. E. H., Regulation of peroxisomal lipid metabolism: The role of acyl-CoA and coenzyme A metabolizing enzymes. Biochimie 2014, 98, 45-55.
- Shen, W.; Zhao, X.; Wang, Q.; Niu, B.; Liu, Y.; He, L.; Weng, H.; Meng, Z.; Chen, Y., Genotoxicity evaluation of low doses of avermectin to hemocytes of silkworm (Bombyx mori) and response of gene expression to DNA damage. Pestic. Biochem. Physiol. 2011, 101, (3), 159-164.
- Molinari, G.; Soloneski, S.; Larramendy, M. L., New ventures in the genotoxic and cytotoxic effects of macrocyclic lactones, abamectin and ivermectin. Cytogenet Genome Res 2010, 128, (1-3), 37-45.
- Wu, X.; Zhang, L.; Yang, C.; Zong, M.; Huang, Q.; Tao, L., Detection on emamectin benzoate-induced apoptosis and DNA damage in Spodoptera frugiperda Sf-9 cell line. Pestic Biochem Physiol 2016, 126, 6-12.
- Yasukawa, T.; Nakahara, Y.; Hirai, J.; Inoue, Y. H., Drosophila Ogg1 is required to suppress 8-oxo-guanine accumulation following oxidative stress. Genes Genet. Syst. 2015, 90, (1), 11-20.
- Yoo, S.; McKee, B. D., Overexpression of Drosophila Rad51 protein (DmRad51) cell cycle progression and leads to apoptosis. Chromosoma 2004, 113, (2), 92-101.
- Bi, X.; Gong, M.; Srikanta, D.; Rong, Y. S., Drosophila ATM and Mre11 are essential for the G2/M checkpoint induced by low-dose irradiation. Genetics 2005, 171, (2), 845-7.
- Kanel, D. P.; Shusterman, M.; Rong, Y. K.; McVey, M., Competition between Replicative and Translesion Polymerases during Homologous Recombination Repair in Drosophila. PLoS Genet. 2012, 8, (4), 447-455.
- Lipinszki, Z.; Kovacs, L.; Deak, P.; Udvardy, A., Ubiquitylation of Drosophila p54/Rpn10/S5a Regulates Its Interaction with the UBA-UBL Polyubiquitin Receptors. Biochemistry 2012, 51, (12), 2461-2470.
- Lemoine, F. J.; Kao, S. Y.; Marriott, S. J., Suppression of DNA repair by HTLV type 1 tax correlates with tax trans-activation of proliferating cell nuclear antigen gene expression. AIDS Res. Hum. Retroviruses 2000, 16, (16), 1623-1627.
- Kao, S. Y.; Lemoine, F. J.; Marriott, S. J., Suppression of DNA repair by human T cell leukemia virus type 1 Tax is rescued by a functional p53 signaling pathway. J. Biol. Chem. 2000, 275, (46), 35926-35931.
- Fraser, A. G.; Evan, G. I., Identification of a Drosophila melanogaster ICE/CED-3-related protease, drICE. EMBO J 1997, 16, (10), 2805-13.
- Akagawa, H.; Hara, Y.; Togane, Y.; Iwabuchi, K.; Hiraoka, T.; Tsujimura, H., The role of the effector caspases drICE and dcp-1 for cell death and corpse clearance in the developing optic lobe in Drosophila. Dev. Biol. 2015, 404, (2), 61-75.
- Low, P.; Varga, A.; Pircs, K.; Nagy, P.; Szatmari, Z.; Sass, M.; Juhasz, G., Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila. BMC Cell Biol. 2013, 14.
- Cash, A. C.; Andrews, J., Fine scale analysis of gene expression in Drosophila melanogaster gonads reveals Programmed cell death 4 promotes the differentiation of female germline stem cells. BMC Dev. Biol. 2012, 12.
- Kumar, S.; Doumanis, J., The fly caspases. Cell Death Differ. 2000, 7, (11), 1039-1044.
- Li, S.; Li, M.; Cui, Y. L.; Wang, X. S., Avermectin exposure induces apoptosis in King pigeon brain neurons. Pestic. Biochem. Physiol. 2013, 107, (2), 177-187.
- Liu, C.; Li, M.; Cao, Y.; Qu, J. P.; Zhang, Z. W.; Xu, S. W.; Li, S., Effects of avermectin on immune function and oxidative stress in the pigeon spleen. Chem. Biol. Interact. 2014, 210, 43-50.
- Zhu, W. J.; Li, M.; Liu, C.; Qu, J. P.; Min, Y. H.; Xu, S. W.; Li, S., Avermectin induced liver injury in pigeon: Mechanisms of apoptosis and oxidative stress. Ecotoxicol. Environ. Saf. 2013, 98, 74-81.
- Korystov, Y. N.; Mosin, V. A.; Shaposhnikova, V. V.; Levitman, M. K.; Kudryavtsev, A. A.; Kruglyak, E. B.; Sterlina, T. S.; Viktorov, A. V.; Drinyaev, V. A., A comparative study of effects of aversectin C, abamectin and ivermectin on apoptosis of rat thymocytes induced by radiation and dexamethasone. Acta Vet Brno 1999, 68, (1), 23-29.
- Lee, H. C.; Wei, Y. H., Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp. Biol. Med. (Maywood) 2007, 232, (5), 592-606.
- Kobayashi, S., Choose Delicately and Reuse Adequately: The Newly Revealed Process of Autophagy. Biol. Pharm. Bull. 2015, 38, (8), 1098-1103.
- Liu, C.; Zhao, Y. B.; Chen, L. J.; Zhang, Z. W.; Li, M.; Li, S., Avermectin induced autophagy in pigeon spleen tissues. Chem. Biol. Interact. 2015, 242, 327-333.
- Qu, J. P.; Li, M.; Zhao, F. Q.; Liu, C.; Zhang, Z. W.; Xu, S. W.; Li, S., Autophagy is upregulated in brain tissues of pigeons exposed to avermectin. Ecotoxicol. Environ. Saf. 2015, 113, 159-168.
- Ankley, G. T.; Bennett, R. S.; Erickson, R. J.; Hoff, D. J.; Hornung, M. W.; Johnson, R. D.; Mount, D. R.; Nichols, J. W.; Russom, C. L.; Schmieder, P. K.; Serrrano, J. A.; Tietge, J. E.; Villeneuve, D. L., Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 2010, 29, (3), 730-741.
- Colbourne, J. K.; Pfrender, M. E.; Gilbert, D.; Thomas, W. K.; Tucker, A.; Oakley, T. H.; Tokishita, S.; Aerts, A.; Arnold, G. J.; Basu, M. K.; Bauer, D. J.; Caceres, C. E.; Carmel, L.; Casola, C.; Choi, J. H.; Detter, J. C.; Dong, Q.; Dusheyko, S.; Eads, B. D.; Frohlich, T.; Geiler-Samerotte, K. A.; Gerlach, D.; Hatcher, P.; Jogdeo, S.; Krijgsveld, J.; Kriventseva, E. V.; Kultz, D.; Laforsch, C.; Lindquist, E.; Lopez, J.; Manak, J. R.; Muller, J.; Pangilinan, J.; Patwardhan, R. P.; Pitluck, S.; Pritham, E. J.; Rechtsteiner, A.; Rho, M.; Rogozin, I. B.; Sakarya, O.; Salamov, A.; Schaack, S.; Shapiro, H.; Shiga, Y.; Skalitzky, C.; Smith, Z.; Souvorov, A.; Sung, W.; Tang, Z.; Tsuchiya, D.; Tu, H.; Vos, H.; Wang, M.; Wolf, Y. I.; Yamagata, H.; Yamada, T.; Ye, Y.; Shaw, J. R.; Andrews, J.; Crease, T. J.; Tang, H.; Lucas, S. M.; Robertson, H. M.; Bork, P.; Koonin, E. V.; Zdobnov, E. M.; Grigoriev, I. V.; Lynch, M.; Boore, J. L., The ecoresponsive genome of Daphnia pulex. Science 2011, 331, (6017), 555-61.
- Lopez-Maury, L.; Marguerat, S.; Bahler, J., Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 2008, 9, (8), 583-593.
- Kassahn, K. S.; Crozier, R. H.; Portner, H. O.; Caley, M. J., Animal performance and stress: responses and tolerance limits at different levels of biological organisation. Biological Reviews 2009, 84, (2), 277-292.
- Benskin, J. P.; Ikonomou, M. G.; Surridge, B. D.; Dubetz, C.; Klaassen, E., Biodegradation potential of aquaculture chemotherapeutants in marine sediments. Aquac. Res. 2016, 47, (2), 482-497.
- Langford, K. H.; Oxnevad, S.; Schoyen, M.; Thomas, K. V., Do antiparasitic medicines used in aquaculture pose a risk to the Norwegian aquatic rnvironment? Environ. Sci. Technol. 2014, 48, (14), 7774-7780.
- Black, K. D.; Cook, E. J.; Jones, K. J.; Kelly, M. S.; Leakey, R. J.; Nickell, T. D.; Sayer, M. D. J.; Tett, P.; Willis, K. Review and synthesis of the environmental impacts of aquaculture. Report for the Scottish Executive Central Research Unit; The Scottish Association for Marine Science and Napier University: Edinburgh, Scotland 2002; p 62.
- Ikonomou, M. G.; Surridge, B. D., Ultra-trace determination of aquaculture chemotherapeutants and degradation products in environmental matrices by LC-MS/MS. Int. J. Environ. Anal. Chem. 2013, 93, (2), 183-198.
- Lalonde, B. A.; Ernst, W.; Greenwood, L., Measurement of oxytetracycline and emamectin benzoate in freshwater sediments downstream of land based aquaculture facilities in the Atlantic Region of Canada. Bull Environ Contam Toxicol 2012, 89, (3), 547-50.