Stabilization of Unsteady Nonlinear Waves by Phase-Space Manipulation (original) (raw)

Stabilization of extreme wave events by phase space manipulation

arXiv: Fluid Dynamics, 2020

We introduce a dynamic stabilization scheme universally applicable to unidirectional nonlinear coherent waves. By abruptly changing the waveguiding properties, the breathing of wave packets subject to modulation instability can be stabilized as a result of the abrupt expansion a homoclinic orbit and its fall into an elliptic fixed point (center). We apply this concept to the nonlinear Schr{o}dinger equation framework and show that an Akhmediev breather envelope, which is at the core of Fermi-Pasta-Ulam recurrence and extreme wave events, can be \textit{frozen} into a steady periodic (dnoidal) wave by a suitable variation of a single external physical parameter. We experimentally demonstrate this general approach in the particular case of surface gravity water waves propagating in a wave flume with an abrupt bathymetry change. Our results highlight the influence of topography and waveguide properties on the lifetime of rogue waves and confirm the possibility to control extreme wave e...

A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity

Physics of Fluids, 2012

A nonlinear Schrödinger equation for the envelope of two dimensional surface water waves on finite depth with non zero constant vorticity is derived, and the influence of this constant vorticity on the well known stability properties of weakly nonlinear wave packets is studied. It is demonstrated that vorticity modifies significantly the modulational instability properties of weakly nonlinear plane waves, namely the growth rate and bandwidth.

Stabilization of uni-directional water wave trains over an uneven bottom

Nonlinear Dynamics

We study the evolution of nonlinear surface gravity water wave packets developing from modulational instability over an uneven bottom. A nonlinear Schrödinger equation (NLSE) with coefficients varying in space along propagation is used as a reference model. Based on a low-dimensional approximation obtained by considering only three complex harmonic modes, we discuss how to stabilize a one-dimensional pattern in the form of train of large peaks sitting on a background and propagating over a significant distance. Our approach is based on a gradual depth variation, while its conceptual framework is the theory of autoresonance in nonlinear systems and leads to a quasi-frozen state. Three main stages are identified: amplification from small sideband amplitudes, separatrix crossing and adiabatic conversion to orbits oscillating around an elliptic fixed point. Analytical estimates on the three stages are obtained from the low-dimensional approximation and validated by NLSE simulations. Our...

Focusing of nonlinear wave groups in deep water

Journal of Experimental and Theoretical Physics Letters, 2001

The freak wave phenomenon in the ocean is explained by the nonlinear dynamics of phase-modulated wave trains. It is shown that the preliminary quadratic phase modulation of wave packets leads to a significant amplification of the usual modulation (Benjamin-Feir) instability. Physically, the phase modulation of water waves may be due to a variable wind in storm areas. The well-known breather solutions of the cubic Schrödinger equation appear on the final stage of the nonlinear dynamics of wave packets when the phase modulation becomes more uniform. © 2001 MAIK "Nauka/Interperiodica".

Instability and Evolution of Nonlinearly Interacting Water Waves

Physical Review Letters, 2006

We consider the modulational instability of nonlinearly interacting two-dimensional waves in deep water, which are described by a pair of two-dimensional coupled nonlinear Schrödinger equations. We derive a nonlinear dispersion relation. The latter is numerically analyzed to obtain the regions and the associated growth rates of the modulational instability. Furthermore, we follow the long term evolution of the latter by means of computer simulations of the governing nonlinear equations and demonstrate the formation of localized coherent wave envelopes. Our results should be useful for understanding the formation and nonlinear propagation characteristics of large-amplitude freak waves in deep water.

Rogue Waves: From Nonlinear Schrödinger Breather Solutions to Sea-Keeping Test

PLoS ONE, 2013

Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrö dinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship.

Deep-Water Waves: on the Nonlinear Schrödinger Equation and its Solutions

Journal of Theoretical and Applied Mechanics, 2013

We present a brief discussion on the nonlinear Schrödinger equation for modelling the propagation of the deep-water wavetrains and a discussion on its doubly-localized breather solutions, that can be connected to the sudden formation of extreme waves, also known as rogue waves or freak waves.

On weakly nonlinear modulation of waves on deep water

Physics of Fluids, 2000

We propose a new approach for modeling weakly nonlinear waves, based on enhancing truncated amplitude equations with exact linear dispersion. Our example is based on the nonlinear Schrödinger ͑NLS͒ equation for deep-water waves. The enhanced NLS equation reproduces exactly the conditions for nonlinear four-wave resonance ͑the ''figure 8'' of Phillips͒ even for bandwidths greater than unity. Sideband instability for uniform Stokes waves is limited to finite bandwidths only, and agrees well with exact results of McLean; therefore, sideband instability cannot produce energy leakage to high-wave-number modes for the enhanced equation, as reported previously for the NLS equation. The new equation is extractable from the Zakharov integral equation, and can be regarded as an intermediate between the latter and the NLS equation. Being solvable numerically at no additional cost in comparison with the NLS equation, the new model is physically and numerically attractive for investigation of wave evolution.

A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation

Journal of Fluid Mechanics, 1985

In existing experiments it is known that the slow evolution of nonlinear deep-water waves exhibits certain asymmetric features. For example, an initially symmetric wave packet of sufficiently large wave slope will first lean forward and then split into new groups in an asymmetrical manner, and, in a long wavetrain, unstable sideband disturbances can grow unequally to cause an apparent downshift of carrier-wave frequency. These features lie beyond the realm of applicability of the celebrated cubic Schrodinger equation (CSE), but can be, and to some extent have been, predicted by weakly nonlinear theories that are not limited to slowly modulated waves (i.e. waves with a narrow spectral band). Alternatively, one may employ the fourth-order equations of Dysthe (1979), which are limited to narrow-banded waves but can nevertheless be solved more easily by a pseudospectral numerical method. Here we report the numerical simulation of three cases with a view to comparing with certain recent experiments and to complement the numerical results obtained by others from the more general equations.

Dynamics of a Wave Packet on the Surface of an Inhomogeneously Vortical Fluid (Lagrangian Description)

Izvestiya, Atmospheric and Oceanic Physics, 2018

⎯A nonlinear Schrödinger equation (NSE) describing packets of weakly nonlinear waves in an inhomogeneously vortical infinitely deep fluid has been derived. The vorticity is assumed to be an arbitrary function of Lagrangian coordinates and quadratic in the small parameter proportional to the wave steepness. It is shown that the modulational instability criteria for the weakly vortical waves and potential Stokes waves on deep water coincide. The effect of vorticity manifests itself in a shift of the wavenumber of high-frequency filling. A special case of Gerstner waves with a zero coefficient at the nonlinear term in the NSE is noted.