The Practicality of Mesoporous Silica Nanoparticles as Drug Delivery Devices and Progress Toward This Goal (original) (raw)

molecules Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights

Molecules, 2018

This manuscript reviews the recent progress on mesoporous silica nanoparticles as drug delivery systems. Their intrinsic structural, textural and chemical features permit to design versatile multifunctional nanosystems with the capability to target the diseased tissue and release the cargo on demand upon exposition to internal or external stimuli. The degradation rate of these nanocarriers in diverse physiological fluids is overviewed obeying their significance for their potential translation towards clinical applications. To conclude, the balance between the benefits and downsides of this revolutionary nanotechnological tool is also discussed.

Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges

Nanoscale, 2010

One of the big challenges of medicine today is to deliver drugs specifically to defected cells. Nanoparticulate drug carriers have the potential to answer to this call, as nanoparticles can cross physiological barriers and access different tissues, and also be provided in a targetable form aimed at enhancing cell specificity of the carrier. Recent developments within material science and strong collaborative efforts crossing disciplinary borders have highlighted the potential of mesoporous silica nanoparticles (MSNs) for such targeted drug delivery. Here we outline recent advances which in this sense push MSNs to the forefront of drug delivery development. Relatively straightforward inside-out tuning of the vehicles, high flexibility, and potential for sophisticated release mechanisms make these nanostructures promising candidates for targeted drug delivery such as 'smart' cancer therapies. Moreover, due to the large surface area and the controllable surface functionality of MSNs, they can be controllably loaded with large amounts of drugs and coupled to homing molecules to facilitate active targeting, simultaneously carrying traceable (fluorescent or magnetically active) modalities, also making them highly interesting as theragnostic agents. However, the increased relative surface area and small size, and flexible surface functionalization which is beneficially exploited in nanomedicine, consequently also includes potential risks in their interactions with biological systems. Therefore, we also discuss some safety issues regarding MSNs and highlight how different features of the drug delivery platform influence their behaviour in a biological setting. Addressing these burning questions will facilitate the application of MSNs in nanomedicine.

New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery

International Journal of Pharmaceutics, 2019

Mesoporous silica nanoparticles (MSNs) displays interesting properties for biomedical applications such as high chemical stability, large surface area and tunable pores diameters and volumes, allowing the incorporation of large amounts of drugs, protecting them from deactivation and degradation processes acting as an excellent nanoplatform for 2 drug delivery. However, the functional MSNs do not present the ability to transport the therapeutics without any leakage until reach the targeted cells causing side effects. On the other hand, the hydroxyls groups available on MSNs surface allows the conjugation of specific molecules which can binds to the overexpressed Enhanced Growth Factor Receptor (EGFR) in many tumors, representing a potential strategy for the cancer treatment. Beyond that, the targeting molecules conjugate onto mesoporous surface increase its cell internalization and act as gatekeepers blocking the mesopores controlling the drug release. In this context, multifunctional MSNs emerge as stimuli-responsive controlled drug delivery systems (CDDS) to overcome drawbacks as low internalization, premature release before to reach the region of interest, several side effects and low effectiveness of the current treatments. This review presents an overview of MSNs fabrication methods and its properties that affects drug delivery as well as stimuli-responsive CDDS for cancer treatment.

Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update

Expert Opinion on Drug Delivery, 2019

Introduction: Mesoporous silica nanoparticles (MSNs) are outstanding nanoplatforms for drug delivery. Herein, the most recent advances to turn MSN-based carriers into minimal side effect drug delivery agents are covered. Areas covered: This review summarizes the scientific advances dealing with MSNs for targeted and stimuli-responsive drug delivery since 2015. Delivery aspects to diseased tissues together with approaches to obtain smart MSNs able to respond to internal or external stimuli and their applications are here described. Special emphasis is done on the combination of two or more stimuli on the same nanoplatform and on combined drug therapy. Expert opinion: The use of MSNs in nanomedicine is a promising research field because they are outstanding platforms for treating different pathologies. This is possible thanks to their structural, chemical, physical and biological properties. However, there are certain issues that should be overcome to improve the suitability of MSNs for clinical applications. All materials must be properly characterized prior to their in vivo evaluation; furthermore, preclinical in vivo studies need to be standardized to demonstrate the MSNs clinical translation potential. ARTICLE HISTORY

Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery

Expert Opinion on Drug Delivery, 2014

Introduction: Mesoporous silica nanoparticles (MSNs) are outstanding nanoplatforms for drug delivery. Herein, the most recent advances to turn MSN-based carriers into minimal side effect drug delivery agents are covered. Areas covered: This review summarizes the scientific advances dealing with MSNs for targeted and stimuli-responsive drug delivery since 2015. Delivery aspects to diseased tissues together with approaches to obtain smart MSNs able to respond to internal or external stimuli and their applications are here described. Special emphasis is done on the combination of two or more stimuli on the same nanoplatform and on combined drug therapy. Expert opinion: The use of MSNs in nanomedicine is a promising research field because they are outstanding platforms for treating different pathologies. This is possible thanks to their structural, chemical, physical and biological properties. However, there are certain issues that should be overcome to improve the suitability of MSNs for clinical applications. All materials must be properly characterized prior to their in vivo evaluation; furthermore, preclinical in vivo studies need to be standardized to demonstrate the MSNs clinical translation potential.

Mesoporous silica nanoparticles in target drug delivery system: A review

International Journal of Pharmaceutical Investigation, 2015

Due to lack of specifi cation and solubility of drug molecules, patients have to take high doses of the drug to achieve the desired therapeutic effects for the treatment of diseases. To solve these problems, there are various drug carriers present in the pharmaceuticals, which can used to deliver therapeutic agents to the target site in the body. Mesoporous silica materials become known as a promising candidate that can overcome above problems and produce effects in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles (MSNs) are widely used as a delivery reagent because silica possesses favorable chemical properties, thermal stability, and biocompatibility. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release of the target site. The properties of mesoporous, including pore size, high drug loading, and porosity as well as the surface properties, can be altered depending on additives used to prepare MSNs. Active surface enables functionalization to changed surface properties and link therapeutic molecules. They are used as widely in the fi eld of diagnosis, target drug delivery, bio-sensing, cellular uptake, etc., in the bio-medical fi eld. This review aims to present the state of knowledge of silica containing mesoporous nanoparticles and specifi c application in various biomedical fi elds.

Role of mesoporous silica nanoparticles for the drug delivery applications

Materials Research Express

The mesoporous silica nanoparticles (MSNs), because of the synthesis, ease of surface functionalization, tunable pore size, large surface area, and biocompatibility, are being useful in many of the biomedical applications like drug delivery, theranostics, stem cell research, etc. It has been a potent nanocarrier for many different therapeutic agents, i.e., the surface functionalization of silica nanoparticles (SNs) with chemical agents, polymers, and supramolecular moieties enable the efficient delivery of therapeutic agents in a highly controlled manner. Also, the toxicity, biosafety, and in vivo efficiency involving biodistribution, pharmacokinetics, biodegradation, and excretion of MSNs play an important role in its involvement in the clinical applications. A coherence between chemistry and biological sciences extends its opportunities to a wide range in the field of nanomedicine such as smart drug delivery systems, functionalization and gating approach, controlled drug delivery systems, diagnostic and targeted theragnostic approach etc. Thus, taking advantage of the inbuilt properties of the MSNs applicable to the biomedical sector, the present review describes a panorama on the SNs which are presently used for the development of theragnostic probes and advanced drug delivery platforms.

PROGRESS REPORT www.afm-journal.de Mesoporous Silica Nanoparticles for Drug Delivery

Advanced Functional Materials, 2019

In recent years, nanomedicine has emerged at the forefront of nanotechnology, generating great expectations in the biomedical field. Researchers are developing novel nanoparticles for both diagnostic applications using imaging technology and treatment purposes through drug delivery technologies. Among all the available nanoparticles, inorganic mesoporous silica nanoparticles are the newcomers to the field, contributing with their unique and superlative properties. A brief overview of the most recent progress in the synthesis of mesoporous silica nanoparticles and their use as drug delivery nanocarriers is provided. The latest trends in this type of nanoparticles and their use in modern medicine are discussed, highlighting the significant impact that this technology might have in the near future.

Mesoporous silica nanoparticles in medicine—Recent advances

MSNs have attracted increasing interest as drug carriers due to promising in vivo results in small-animal disease models, especially related to cancer therapy. In most cases small hydrophobic drugs have been used, but recent in vitro studies demonstrate that MSNs are highly interesting for gene delivery applications. This review covers recent advances related to the therapeutic use of mesoporous silica nanoparticles (MSNs) administered intravenously, intraperitoneally or locally. We also cover the use of MSNs in alternative modes of therapy such as photodynamic therapy and multidrug therapy. We further discuss the current understanding about the biodistribution and safety of MSNs. Finally, we critically discuss burning questions especially related to experimental design of in vivo studies in order to enable a fast transition to clinical trials of this promising drug delivery platform.