The lymphatic vasculature revisited (original) (raw)

Lymphatic endothelium: morphological, molecular and functional properties

The Journal of Cell Biology, 2003

The lymphatic microvasculature is uniquely adapted for the continuous removal of interstitial fluid and proteins, and is an important point of entry for leukocytes and tumor cells. The traditional view that lymphatic capillaries are passive participants in these tasks is currently being challenged. This overview highlights recent advances in our understanding of the molecular mechanisms underlying the formation and function of lymphatic vessels.

The New Era of the Lymphatic System: No Longer Secondary to the Blood Vascular System

Cold Spring Harbor Perspectives in Medicine, 2012

The blood and lymphatic systems are the two major circulatory systems in our body. Although the blood system has been studied extensively, the lymphatic system has received much less scientific and medical attention because of its elusive morphology and mysterious pathophysiology. However, a series of landmark discoveries made in the past decade has begun to change the previous misconception of the lymphatic system to be secondary to the more essential blood vascular system. In this article, we review the current understanding of the development and pathology of the lymphatic system. We hope to convince readers that the lymphatic system is no less essential than the blood circulatory system for human health and well-being. STRUCTURE AND FUNCTION OF THE LYMPHATIC SYSTEM The lymphatic system is a linear network of lymphatic vessels and secondary lymphoid organs. Macroscopically, the blood vascular system is literally a circular system in which the fluid (blood) leaves the heart; runs through the arteries, arterioles, capillary plexus, venules, and veins; and returns to the heart (Fig.

Lymphatic vessel activation in cancer

Annals of The New York Academy of Sciences, 2008

Most cancerous lesions metastasize through the lymphatic system and the status of regional lymph nodes is the most important indicator of a patient's prognosis. The extent of lymph node involvement with cancer is also an important parameter used for determining treatment options. Although the importance of the lymphatic system for metastasis has been well recognized, traditionally, the lymphatic vessels have not been considered actively involved in the metastatic process. Recent evidence, however, indicates that the activation of the lymphatic system is an important factor in tumor progression to metastasis. Tumor lymphangiogenesis has been associated with increased propensity for metastasis, and lymphatic vessel density has emerged as another promising prognostic indicator. More recently, lymphangiogenesis in the sentinel lymph nodes has been shown to contribute to malignant progression. In addition to its role as a transport system for tumor cells, the lymphatic system may also be more actively involved in metastases by directly facilitating tumor cell recruitment into the lymphatic vessels. This review highlights recent advances in our understanding of the mechanisms by which lymphatic vessels participate in metastasis.

Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic

Proceedings of the National Academy of Sciences, 2016

Afferent lymphatic vessels bring antigens and diverse populations of leukocytes to draining lymph nodes, whereas efferent lymphatics allow only lymphocytes and antigens to leave the nodes. Despite the fundamental importance of afferent vs. efferent lymphatics in immune response and cancer spread, the molecular characteristics of these different arms of the lymphatic vasculature are largely unknown. The objective of this work was to explore molecular differences behind the distinct functions of afferent and efferent lymphatic vessels, and find possible molecules mediating lymphocyte traffic. We used laser-capture microdissection and cell sorting to isolate lymphatic endothelial cells (LECs) from the subcapsular sinus (SS, afferent) and lymphatic sinus (LS, efferent) for transcriptional analyses. The results reveal marked differences between afferent and efferent LECs and identify molecules on lymphatic vessels. Further characterizations of Siglec-1 (CD169) and macrophage scavenger re...

Lymphatics at the crossroads of angiogenesis and lymphangiogenesis

Journal of Anatomy, 2004

The lymphatic system is implicated in interstitial fluid balance regulation, immune cell trafficking, oedema and cancer metastasis. However, the sequence of events that initiate and coordinate lymphatic vessel development (lymphangiogenesis) remains obscure. In effect, the understanding of physiological regulation of lymphatic vasculature has been overshadowed by the greater emphasis focused on angiogenesis, and delayed by a lack of specific markers, thereby limiting this field to no more than a descriptive characterization. Recently, new insights into lymphangiogenesis research have been due to the discovery of lymphatic-specific markers and growth factors of vascular endothelial growth factor (VEGF) family, such as VEGF-C and VEGF-D. Studies using transgenic mice overexpressing VEGF-C and VEGF-D have demonstrated a crucial role for these factors in tumour lymphangiogenesis.

Lymphangiogenesis and lymphatic vessel remodelling in cancer

Nature Reviews Cancer, 2014

| The generation of new lymphatic vessels through lymphangiogenesis and the remodelling of existing lymphatics are thought to be important steps in cancer metastasis. The past decade has been exciting in terms of research into the molecular and cellular biology of lymphatic vessels in cancer, and it has been shown that the molecular control of tumour lymphangiogenesis has similarities to that of tumour angiogenesis. Nevertheless, there are significant mechanistic differences between these biological processes. We are now developing a greater understanding of the specific roles of distinct lymphatic vessel subtypes in cancer, and this provides opportunities to improve diagnostic and therapeutic approaches that aim to restrict the progression of cancer. REVIEWS NATURE REVIEWS | CANCER VOLUME 14 | MARCH 2014 | 159

Lymphatic fluid: exchange mechanisms and regulation

The Journal of Physiology, 2011

Regulation of fluid and material movement between the vascular space of microvessels penetrating functioning organs and the cells therein has been studied extensively. Unanswered questions as to the regulatory mechanisms and routes remain. Significantly less is known about the lymphatic vascular system given the difficulties in seeing, no less isolating, these vessels lying deeper in these same tissues. It has become evident that the exchange microvasculature is not simply a passive biophysical barrier separating the vascular and interstitial compartments but a dynamic, multicellular structure subject to acute regulation and chronic adaptation to stimuli including inflammation, sepsis, diabetes, injury, hypoxia and exercise. Similarly lymphatic vessels range, in their simplest form, from lymphatic endothelium attached to the interstitial matrix, to endothelia and phasic lymphatic smooth muscle that act as Starling resistors. Recent work has demonstrated that among the microvascular lymphatic elements, the collecting lymphatics have barrier properties similar to venules, and thus participate in exchange. As with venules, vasoactive agents can alter both the permeability and contractile properties thereby setting up previously unanticipated gradients in the tissue space and providing potential targets for the pharmacological prevention and/or resolution of oedema.

Lymphatic Biology and the Microcirculation: Past, Present and Future

Microcirculation, 2005

Because of the role that lymphatics have in fluid and macromolecular exchange, lymphatic function has been tightly tied to the study of the microcirculation for decades. Despite this, our understanding of many basic tenets of lymphatic function is far behind that of the blood vascular system. This is in part due to the difficulty inherent in working in small, thin-walled, clear lymphatic vessels and the relative lack of lymphatic specific molecular/cellular markers. The application of cellular and molecular tools to the field of lymphatic biology has recently produced some significant developments in lymphatic endothelial cell biology. These have propelled our understanding of lymphangiogenesis and related fields forward. Whereas the use of some of these techniques in lymphatic muscle biology has somewhat lagged behind those in the endothelium, recent developments in lymphatic muscle contractile and electrical physiology have also led to advances in our understanding of lymphatic transport function, particularly in the regulation of the intrinsic lymph pump. However, much work remains to be done. This paper reviews significant developments in lymphatic biology and discusses areas where further development of lymphatic biology via classical, cellular, and molecular approaches is needed to significantly advance our understanding of lymphatic physiology. Microcirculation (2005) 12, 141-150.