Transplantation of neural stem cells derived from human cord blood to the brain of adult and neonatal rats (original) (raw)

Neural differentiation and potential use of stem cells from the human umbilical cord for central nervous system transplantation therapy

Journal of Neuroscience Research, 2008

The human umbilical cord is a rich source of autologous stem and progenitor cells. Interestingly, subpopulations of these, particularly mesenchymal-like cells from both cord blood and the cord stroma, exhibited a potential to be differentiated into neuron-like cells in culture. Umbilical cord blood stem cells have demonstrated efficacy in reducing lesion sizes and enhancing behavioral recovery in animal models of ischemic and traumatic central nervous system (CNS) injury. Recent findings also suggest that neurons derived from cord stroma mesenchymal cells could alleviate movement disorders in hemiparkinsonian animal models. We review here the neurogenic potential of umbilical cord stem cells and discuss possibilities of their exploitation as an alternative to human embryonic stem cells or neural stem cells for transplantation therapy of traumatic CNS injury and neurodegenerative diseases. V

Neural commitment of cord blood stem cells (HUCB-NSC/NP): therapeutic perspectives

Acta neurobiologiae experimentalis, 2006

Human umbilical cord blood (HUCB) is considered a promising source of neural progenitors capable of being used for cellular therapies in neurological disorders. Here we review briefly our work on the elucidation of mechanisms and development of practical standards as regards the selection, maintenance and use of cord blood derivatives for such purposes. Our results join those of other recent studies in suggesting strongly that, the generation of neural-like cells from tissue belonging to a different germ layer (such as a cord blood is) is most probably explained by reference to a discrete subpopulation of embryonic-like stem cells of pluripotent characteristics. Such cells identified in cord blood through their expression of specific genetic and protein markers can be expanded in vitro and directed toward neurally-committed progenitors differentiating further into more mature neuron-like or macroglia-like cell phenotypes. From this HUCB-derived neural progenitor fraction a novel neu...

Human cord blood-derived neural stem cell line—Possible implementation in studying neurotoxicity

Toxicology in Vitro, 2005

Neural stem cell line developed from human umbilical cord blood (HUCB-NSC) [Burajska et al., 2003. Journal of Neurochemistry 85, 33] is an ethically uncontroversial source of stem cells, able to diVerentiate into neuronal, astrocytic and oligodendroglial lineages. Developmental fate decisions of HUCB-NSC can be experimentally manipulated in vitro by the presence of trophic factors, mitogenes and neuromorphogenes, but can also be inXuenced by neurotoxins. In this report two-dimensional (2-D) and three-dimensional (3-D) HUCB-NSC cultures are introduced as useful models for testing developmental neurotoxicity. For 2-D culture models we established a standardized method for the assessment of the growth rate and cell diVerentiation in 96-well plates. The proliferative capacity of the HUCB-NSC was monitored by the MTT test while their ability to diVerentiate into neural-like cells by immunocytochemistry of -tubulin III and MAP-2 for neurons, GFAP and S-100 for astrocytes and GalC for oligodendrocytes. The 3-D culture of HUCB-NSC is represented by neurospheres. Proliferation and migration of the intermediate precursors from attached neurospheres are shown to be controlled and altered by various growth factors and further modulated by the extracellular matrix component-Wbronectin. Thus, neurospheres derived from the HUCB-NSC line can represent a suitable model of the activation of dormant stem cells residing in their niche, and can be used for neurotoxic studies. 

Human cord blood-derived cells attain neuronal and glial features in vitro

Journal of cell science, 2002

Neural stem cells are clonogenic, self-renewing cells with the potential to differentiate into brain-specific cell lines. Our study demonstrates that a neural-stem-cell-like subpopulation can be selected and expanded in vitro by the use of human umbilical cord blood cells, which are a relatively easily available starting material. Through a combination of antigen-driven magnetic cell sorting and subfractionation according to cell surface adhesive properties, we have isolated a clonogenic fraction devoid of hematopoietic or angiogenetic properties but with relatively high self-renewal potency. The resulting clones express nestin, a neurofilament protein that is one of the most specific markers of multipotent neural stem cells. In the presence of selected growth factors or in the rat brain co-culture system, the progeny of these cells can be oriented towards the three main neural phenotypes: neurons, astroglia and oligodendroglia. The cells show high commitment (about 30% and 40% of t...

Neural Stem-like Cell Line Derived from a Nonhematopoietic Population of Human Umbilical Cord Blood

Stem Cells and Development, 2006

The ability of stem and progenitor cells to proliferate and differentiate into other lineages is widely viewed as a characteristic of stem cells. Previously, we have reported that cells from a CD34 ؊ (nonhematopoietic) adherent subpopulation of human cord blood can acquire a feature of multipotential neural progenitors in vitro. In the present study, using these cord blood-derived stem cells, we have established a clonal cell line termed HUCB-NSCs (human umbilical cord blood-neural stem cells) that expresses several neural antigens and has been grown in culture for more than 60 passages. During this time, HUCB-NSCs retained their growth rate, the ability to differentiate into neuronal-, astrocyte-, and oligodendrocyte-like cells and displayed a stable karyotype. DNA microarray analysis of HUCB-NSCs revealed enhanced expression of selected genes encoding putative stem and progenitor cell markers when compared to other mononuclear cells. dBcAMP-induced HUCB-NSCs were further differentiated into more advanced neuronal cells. This is the first report of the establishment and characterization of a nontransformed HUCB-NSC line that can be grown continuously in a monolayer culture and induced to terminal differentiation. These cells should further our understanding of the regulatory mechanisms involved in NSC self-renewal and differentiation.

Umbilical Cord Blood-Derived Stem Cells and Brain Repair

Annals of the New York Academy of Sciences, 2005

Human umbilical cord blood (HUCB) is now considered a valuable source for stem cell-based therapies. HUCB cells are enriched for stem cells that have the potential to initiate and maintain tissue repair. This potential is especially attractive in neural diseases for which no current cure is available. Furthermore, HUCB cells are easily available and less immunogenic compared to other sources for stem cell therapy such as bone marrow. Accordingly, the number of cord blood transplants has doubled in the last year alone, especially in the pediatric population. The therapeutic potential of HUCB cells may be attributed to inherent ability of stem cell populations to replace damaged tissues. Alternatively, various cell types within the graft may promote neural repair by delivering neural protection and secretion of neurotrophic factors. In this review, we evaluate the preclinical studies in which HUCB was applied for treatment of neurodegenerative diseases and for traumatic and ischemic brain damage. We discuss how transplantation of HUCB cells affects these disorders and we present recent clinical studies with promising outcome.

UMBILICAL CORD BLOOD STEM CELL RESEARCH Cord Blood Stem Cells and Brain Cell Development

This study demonstrated that hematopoietic-derived cells responded to neural growth factors in the subventricular zone in both 6 month old (adult) and 16 month old (elderly) rats. Human umbilical cord cells were implanted into the brain of the rats. Many cord cells retained their hematopoietic identity but a few cells expressed markers (nestin and doublecortin) for endogenous neural progenitors. The cord cells of both the adult rats showed greater migration and survival than those of the elderly rats.

Long-term cultured human umbilical cord neural-like cells transplanted into the striatum of NOD SCID mice

2007

The use of stem cells and other cells as therapies is still in its infancy. One major setback is the limited survival of the grafts, possibly due to immune rejection. Studies were therefore performed with human umbilical cord blood cells (HUCB) to determine the ability of these cells to survive in vivo and the effect of the immune response on their survival by transplantation into the normal striatum of immunodeficient NOD SCID mice. Long-term culture of HUCB cells resulted in several different populations of cells, including one that possessed fine processes and cell bodies that resembled neurons. Their neuronal phenotype was confirmed by immunohistochemical staining for the early neuronal marker TuJ1 and the potentially neural marker Nestin. Five days after cell transplantation of this neuronal phenotype, immunohistochemical staining for human mitochondria confirmed the presence of living HUCB cells in the mouse striatum, with cells localized at the site of injection, expressing early neural and neuronal markers (Nestin and TuJ1) as well as exhibiting neuronal morphology. However, no evidence of surviving cells was apparent 1 month postgrafting. The absence of signs of T cell-mediated rejection, such as CD4 and CD8 lymphocytes and minimal changes in microglia and astrocytes, suggest that cell loss was not due to a T cell-mediated immune response.

Neural cells derived from adult bone marrow and umbilical cord blood

Journal of Neuroscience Research, 2002

Under experimental conditions, tissue-specific stem cells have been shown to give rise to cell lineages not normally found in the organ or tissue of residence. Neural stem cells from fetal brain have been shown to give rise to blood cell lines and conversely, bone marrow stromal cells have been reported to generate skeletal and cardiac muscle, oval hepatocytes, as well as glia and neuron-like cells. This article reviews studies in which cells from postnatal bone marrow or umbilical cord blood were induced to proliferate and differentiate into glia and neurons, cellular lineages that are not their normal destiny. The review encompasses in vitro and in vivo studies with focus on experimental variables, such as the source and characterization of cells, cell-tracking methods, and markers of neural differentiation. The existence of stem/progenitor cells with previously unappreciated proliferation and differentiation potential in postnatal bone marrow and in umbilical cord blood opens up the possibility of using stem cells found in these tissues to treat degenerative, post-traumatic and hereditary diseases of the central nervous system. © 2002 Wiley-Liss, Inc.