Reusable Mesh Signature Scheme for Protecting Identity Privacy of IoT Devices (original) (raw)

Abstract

The development of the Internet of Things (IoT) plays a very important role for processing data at the edge of a network. Therefore, it is very important to protect the privacy of IoT devices when these devices process and transfer data. A mesh signature (MS) is a useful cryptographic tool, which makes a signer sign any message anonymously. As a result, the signer can hide his specific identity information to the mesh signature, namely his identifying information (such as personal public key) may be hidden to a list of tuples that consist of public key and message. Therefore, we propose an improved mesh signature scheme for IoT devices in this paper. The IoT devices seen as the signers may sign their publishing data through our proposed mesh signature scheme, and their specific identities can be hidden to a list of possible signers. Additionally, mesh signature consists of some atomic signatures, where the atomic signatures can be reusable. Therefore, for a large amount of data published by the IoT devices, the atomic signatures on the same data can be reusable so as to decrease the number of signatures generated by the IoT devices in our proposed scheme. Compared with the original mesh signature scheme, the proposed scheme has less computational costs on generating final mesh signature and signature verification. Since atomic signatures are reusable, the proposed scheme has more advantages on generating final mesh signature by reconstructing atomic signatures. Furthermore, according to our experiment, when the proposed scheme generates a mesh signature on 10 MB message, the memory consumption is only about 200 KB. Therefore, it is feasible that the proposed scheme is used to protect the identity privacy of IoT devices.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (52)

  1. Karati, A.; Islam, S.H.; Karuppiah, M. Provably Secure and Lightweight Certificateless Signature Scheme for IIoT Environments. IEEE Trans. Ind. Inf. 2018, 14, 3701-3711. [CrossRef]
  2. Boyen, X. Mesh Signatures-How to Leak a Secret with Unwitting and Unwilling Participants. In Advances in Cryptology-EUROCRYPT 2007; Springer-Verlag: Berlin/Heidelberg, Germany, 2007.
  3. Rivest, R.; Shamir, A.; Tauman, Y. How to leak a secret. In Asiacrypt 2001, LNCS 2248; Boyd, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 552-565.
  4. Boyen, X. Unconditionally Anonymous Ring and Mesh Signatures. J. Cryptol. 2016, 29, 729-774. [CrossRef]
  5. Maji, H.K.; Prabhakaran, M.; Rosulek, M. Attribute-Based Signatures, Topics in Cryptology-CT-RSA 2011, LNCS 6558; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; pp. 376-392.
  6. Chaum, D.; van Heyst, E. Group Signatures. In Eurocrypt'91, LNCS 547; Springer: Berlin/Heidelberg, Germany, 1991; pp. 257-265.
  7. Liu, J.K.; Wei, V.K.; Wong, D.S. Linkable spontaneous anonymous group signature for ad hoc groups. In ACISP 2004: Information Security and Privacy; Springer: Berlin/Heidelberg, Germany, 2004; pp. 325-335.
  8. Chow, S.S.M.; Liu, J.K.; Wong, D.S. Robust receipt-free election system with ballot secrecy and verifieability. NDSS 2008, 8, 81-94.
  9. Tsang, P.P.; Wei, V.K. Short linkable ring signatures for e-voting, e-cash and attestation. In ISPEC 2005: Information Security Practice and Experience; Springer: Berlin/Heidelberg, Germany, 2005; pp. 48-60.
  10. Susilo, W.; Mu, Y. Non-Interactive Deniable Ring Authentication. In ICISC 2003: Information Security and Cryptology-ICISC 2003; Springer: Berlin/Heidelberg, Germany, 2004; pp. 386-401.
  11. Laguillaumie, F.; Vergnaud, D. Multi-designated Verifiers Signatures. In ICICS 2004, Volume 3269 of Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; pp. 495-507.
  12. Gu, K.; Wu, N.; Yin, B.; Jia, W. Secure Data Query Framework for Cloud and Fog Computing. IEEE Trans. Netw. Serv. Manag. 2019. [CrossRef]
  13. Gu, K.; Wu, N.; Yin, B.; Jia, W. Secure Data Sequence Query Framework Based on Multiple Fogs. IEEE Trans. Netw. Serv. Manag. 2019. [CrossRef]
  14. Gu, K.; Wang, K.; Yang, L. Traceable Attribute-Based Signature. J. Inf. Secur. Appl. 2019, 49, 102400. [CrossRef]
  15. Gu, K.; Dong, X.; Wang, L. Efficient Traceable Ring Signature Scheme without Pairings. Adv. Math. Commun. 2019. [CrossRef]
  16. Yu, F.; Liu, L.; Xiao, L.; Li, K.; Cai, S. A robust and fixed-time zeroing neural dynamics for computing time-variant nonlinear equation using a novel nonlinear activation function. Neurocomputing 2019, 350, 108-116. [CrossRef]
  17. Yu, F.; Liu, L.; He, B.; Huang, Y.; Shi, C.; Cai, S.; Song, Y.; Du, S.; Wan, Q. Analysis and FPGA Realization of a Novel 5D Hyperchaotic Four-Wing Memristive System, Active Control Synchronization, and Secure Communication Application. Complexity 2019, 2019, 4047957. [CrossRef]
  18. Yu, F.; Zhang, Z.; Liu, L.; Shen, H.; Huang, H.; Shi, C.; Cai, S.; Song, Y.; Du, S.; Xu, Q. Secure communication scheme based on a new 5D multistable four-wing memristive hyperchaotic system with disturbance inputs. Complexity 2020, 2020, 5859273. [CrossRef]
  19. Chen, Y.; Wang, J.; Xia, R.; Zhang, Q.; Cao, Z.; Yang, K. The visual object tracking algorithm research based on adaptive combination kernel. J. Ambient Intell. Humaniz. Comput. 2019, 10, 4855-4867. [CrossRef]
  20. Li, W.; Chen, Z.; Gao, X.; Liu, W.; Wang, J. Multi-Model Framework for Indoor Localization under Mobile Edge Computing Environment. IEEE Internet Things J. 2019, 6, 4844-4853. [CrossRef]
  21. Li, Y.; Zhu, T. Gait-Based Wi-Fi Signatures for Privacy-Preserving. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (ASIA CCS '16), Xi'an, China, 30 May-3 June 2016; pp. 571-582. [CrossRef]
  22. Sun, J.; Su, Y.; Qin, J.; Hu, J.; Ma, J. Outsourced Decentralized Multi-authority Attribute Based Signature and Its Application in IoT. IEEE Trans. Cloud Comput. 2019. [CrossRef]
  23. Xie, R.; He, C.; Xu, C.; Gao C. Lattice-based dynamic group signature for anonymous authentication in IoT. Ann. Telecommun. 2019, 74, 531-542. [CrossRef]
  24. Mughal, M.A.; Luo, X.; Ullah, A.; Ullah, S.; Mahmood, Z. A Lightweight Digital Signature Based Security Scheme for Human-Centered Internet of Things. IEEE Access 2018, 6, 31630-31643. [CrossRef]
  25. Cui, H.; Deng, R.H.; Liu, R.H.; Yi, X.; Li, Y. Server-Aided Attribute-Based Signature With Revocation for Resource-Constrained Industrial-Internet-of-Things Devices. IEEE Trans. Ind. Inf. 2018, 14, 3724-3732. [CrossRef]
  26. Li, F.; Zheng, Z.; Jin, C. Secure and efficient data transmission in the Internet of Things. Telecommun. Syst. 2016, 62, 111-122; doi:10.1007/s11235-015-0065-y. [CrossRef]
  27. Libert, B.; Peters, T.; Yung, M. Scalable Group Signatures with Revocation. In Advances in Cryptology- EUROCRYPT 2012; Springer-Verlag: Berlin/Heidelberg, Germany, 2012; pp. 609-627.
  28. Libert, B.; Peters, T.; Yung, M. Scalable Group Signatures with Almost-for-Free Revocation. In Advances in Cryptology-CRYPTO2012; Springer-Verlag: Berlin/Heidelberg, Germany, 2012; pp. 571-589.
  29. Ibraimi, L.; Nikova, S.; Hartel, S.; Jonker, W. An Identity-Based Group Signature with Membership Revocation in the Standard Model. Available online: http:/doc.utwente.nl/72270/1/Paper.pdf (accessed on 28 January 2020).
  30. Emura, K.; Miyaji, A.; Omote, K. An r-Hiding Revocable Group Signature Scheme: Group Signatures with the Property of Hiding the Number of Revoked Users. Eur. J. Appl. Math. 2014, 2014, 983040. [CrossRef]
  31. Gu, K.; Yang, L.; Wang, Y.; Wen, S. Traceable Identity-Based Group Signature. RAIRO-Theor. Inf. Appl. 2016, 50, 193-226. [CrossRef]
  32. Yuen, T.H.; Liu, J.K.; Au, M.H.; Susilo, W.; Zhou, J. Efficient linkable and/or threshold ring signature without random oracles. Comput. J. 2013, 56, 407--421. [CrossRef]
  33. Liu, J.K.; Au, M.H.; Susilo, W.; Zhou, J. Linkable Ring Signature with Unconditional Anonymity. IEEE Trans. Knowl. Data Eng. 2014, 26, 157-165. [CrossRef]
  34. Au, M.H.; Liu, J.K.; Susilo, W.; Yuen, T.H. Secure ID-Based Linkable and Revocable-iff-Linked Ring Signature with Constant-Size Construction. Theor. Comput. Sci. 2013, 469, 1-14. [CrossRef]
  35. Kaafarani, A.E.; Ghadafi, E.; Khader, D. Decentralized Traceable Attribute-Based Signatures. In Topics in Cryptology-CT-RSA 2014; Springer-Verlag: Berlin/Heidelberg, Germany, 2014; pp. 327-348.
  36. Ghadafi, E. Stronger Security Notions for Decentralized Traceable Attribute-Based Signatures and More Efficient Constructions. In Topics in Cryptology-CT-RSA 2015.; Springer-Verlag: Berlin/Heidelberg, Germany, 2015; pp. 391-409.
  37. Gu, K.; Jia, W.; Wang, G.; Wen, S. Efficient and secure attribute-based signature for monotone predicates. Acta Inf. 2017, 54, 521-541. [CrossRef]
  38. Song, T.; Li, R.; Mei, B.; Yu, J.; Xing, X.; Cheng, X. A privacy preserving communication protocol for IoT applications in smart homes. IEEE Internet Things J. 2017, 4, 1844-1852. [CrossRef]
  39. Dwivedi, A.D.; Srivastava, G.; Dhar, G.; Singh, R. A decentralized privacy-preserving healthcare blockchain for IoT. Sensors 2019, 19, 326. [CrossRef] [PubMed]
  40. Sharma, S.; Chen, K.; Sheth, K. Toward practical privacy-preserving analytics for IoT and cloud-based healthcare systems. IEEE Internet Comput. 2018, 22, 42-51. [CrossRef]
  41. Zhou, J.; Cao, Z.; Dong, X.; Vasilakos, A. Security and privacy for cloud-based IoT: Challenges. IEEE Commun. Mag. 2017, 55, 26-33. [CrossRef]
  42. Gope, P.; Sikdar, B. Lightweight and privacy-preserving two-factor authentication scheme for IoT devices. IEEE Internet Things J. 2018, 6, 580-589. [CrossRef]
  43. Li, X.; Liu, S.; Wu, F.; Kumari, S; Rodrigues, J. Privacy preserving data aggregation scheme for mobile edge computing assisted IoT applications. IEEE Internet Things J. 2018, 6, 4755-4763. [CrossRef]
  44. Shen, M.; Tang, X.; Zhu, L.; Du, X.; Guizani, M. Privacy-preserving support vector machine training over blockchain-based encrypted IoT data in smart cities. IEEE Internet Things J. 2019, 6, 7702-7712. [CrossRef]
  45. Lu, R. A new communication-efficient privacy-preserving range query scheme in fog-enhanced IoT. IEEE Internet Things J. 2018, 6, 2497-2505. [CrossRef]
  46. Huang, P.; Guo, P.; Li, M.; Fang, Y. Practical Privacy-preserving ECG-based Authentication for IoT-based Healthcare. IEEE Internet Things J. 2019, 6, 9200-9210. [CrossRef]
  47. Jiang, L.; Chen, L.; Giannetsos, T.; Luo, B.; Liang, K.; Han, J. Toward Practical Privacy-Preserving Processing Over Encrypted Data in IoT: An Assistive Healthcare Use Case. IEEE Internet Things J. 2019, 6, 10177-10190. [CrossRef]
  48. Ma, Z.; Liu, Z.; Liu, X.; Ma, J.; Li, F. Privacy-Preserving Outsourced Speech Recognition for Smart IoT Devices. IEEE Internet Things J. 2019, 6, 8406-8420. [CrossRef]
  49. Zhao, Y.; Yang, L.T.; Sun, J. Privacy-Preserving Tensor-Based Multiple Clusterings on Cloud for Industrial IoT. IEEE Trans. Ind. Inf. 2018, 15, 2372-2381. [CrossRef]
  50. Gan, X.; Li, X.; Huang, Y.; Fu, L.; Wang, X. When Crowdsourcing Meets Social IoT: An Efficient Privacy-Preserving Incentive Mechanism. IEEE Internet Things J. 2019, 6, 9707-9721. [CrossRef]
  51. Gochoo, M.; Tan, T.H.; Huang, S.C.; Batjargal, T.; Hsieh, J.; Alnajjar, F. S.; Chen Y. Novel IoT-Based Privacy-Preserving Yoga Posture Recognition System Using Low-Resolution Infrared Sensors and Deep Learning. IEEE Internet Things J. 2019, 6, 7192-7200. [CrossRef]
  52. Xu, C.; Ren, J.; Zhang, D.; Zhangm Y. Distilling at the edge: A local differential privacy obfuscation framework for IoT data analytics. IEEE Commun. Mag. 2018, 56, 20-25. [CrossRef]