Hydrogen production in Chlamydomonas: photosystem II-dependent and-independent pathways differ in their requirement for starch metabolism (original) (raw)
Related papers
The Plant Cell, 2011
Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H 2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H 2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H 2 production.
2014
In Chlamydomonas reinhardtii, prolonged anaerobiosis leads to the expression of enzymes belonging to various fermentative pathways. Among them, oxygen-sensitive hydrogenases (HydA1/2) catalyze the synthesis of molecular hydrogen from protons and reduced ferredoxin in the stroma. In this work, by analyzing wild type and mutants affected in H2 production, we show that maximal PSII photosynthetic electron transfer during the first seconds of illumination after a prolonged dark-anaerobiosis period is linearly related to hydrogenase capacity. Based on the specific chlorophyll fluorescence induction kinetics typical of hydrogenase-deficient mutants, we set up an in vivo fluorescence imaging screening protocol allowing to isolate mutants impaired in hydrogenase expression or activity, as well as mutants altered in related metabolic pathways required for energy production in anaerobiosis. Compared to previously described screens for mutants impaired in H2 production, our screening method is...
Plant Physiology, 2015
The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP + oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments.
2009
The photoproduction of H 2 was studied in a sulfur-deprived Chlamydomonas reinhardtii D1 mutant that carried a double amino acid substitution. The leucine residue L159 was replaced by isoleucine, and the asparagine N230 was replaced by tyrosine (L159I-N230Y). Phenotypic characterization of the mutant showed some interesting features compared to its wild type, namely: (1) a lower chlorophyll content; (2) a higher photosynthetic capacity and higher relative quantum yield of photosynthesis; (3) a higher respiration rate; (4) a very high conversion of violaxanthin to zeaxanthin during H 2 production; (5) a prolonged period of H 2 production. In standard conditions, the mutant produced more than 500 ml of H 2 , that is, more than one order of magnitude greater than its wild type, and about 5-times greater than the CC124 strain that was used for comparison. The better performance of the mutant was mainly the result of a longer production period. Biogas produced contained up to 99.5% H 2 .
THE PLANT CELL ONLINE, 2004
DNA insertional transformants of Chlamydomonas reinhardtii were screened chemochromically for attenuated H 2 production. One mutant, displaying low H 2 gas photoproduction, has a nonfunctional copy of a gene that shows high homology to the family of isoamylase genes found in several photosynthetic organisms. DNA gel blotting and gene complementation were used to link this isoamylase gene to previously characterized nontagged sta7 mutants. This mutant is therefore denoted sta7-10. In C. reinhardtii, the STA7 isoamylase gene is important for the accumulation of crystalline starch, and the sta7-10 mutant reported here contains <3% of the glucose found in insoluble starch when compared with wild-type control cells. Hydrogen photoproduction rates, induced after several hours of dark, anaerobic treatment, are attenuated in sta7 mutants. RNA gel blot analysis indicates that the mRNA transcripts for both the HydA1 and HydA2 [Fe]-hydrogenase genes are expressed in the sta7-10 mutant at greater than wild-type levels 0.5 h after anaerobic induction. However, after 1.5 h, transcript levels of both HydA1 and HydA2 begin to decline rapidly and reach nearly undetectable levels after 7 h. In wildtype cells, the hydrogenase transcripts accumulate more slowly, reach a plateau after 4 h of anaerobic treatment, and maintain the same level of expression for >7 h under anaerobic incubation. Complementation of mutant cells with genomic DNA corresponding to the STA7 gene restores both the starch accumulation and H 2 production phenotypes. The results indicate that STA7 and starch metabolism play an important role in C. reinhardtii H 2 photoproduction. Moreover, the results indicate that mere anaerobiosis is not sufficient to maintain hydrogenase gene expression without the underlying physiology, an important aspect of which is starch metabolism.
PLANT PHYSIOLOGY, 2014
Biological conversion of solar energy into hydrogen is naturally realized by some microalgae species due to a coupling between the photosynthetic electron transport chain and a plastidial hydrogenase. While promising for the production of clean and sustainable hydrogen, this process requires improvement to be economically viable. Two pathways, called direct and indirect photoproduction, lead to sustained hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures. The indirect pathway allows an efficient time-based separation of O 2 and H 2 production, thus overcoming the O 2 sensitivity of the hydrogenase, but its activity is low. With the aim of identifying the limiting step of hydrogen production, we succeeded in overexpressing the plastidial type II NAD(P)H dehydrogenase (NDA2). We report that transplastomic strains overexpressing NDA2 show an increased activity of nonphotochemical reduction of plastoquinones (PQs). While hydrogen production by the direct pathway, involving the linear electron flow from photosystem II to photosystem I, was not affected by NDA2 overexpression, the rate of hydrogen production by the indirect pathway was increased in conditions, such as nutrient limitation, where soluble electron donors are not limiting. An increased intracellular starch was observed in response to nutrient deprivation in strains overexpressing NDA2. It is concluded that activity of the indirect pathway is limited by the nonphotochemical reduction of PQs, either by the pool size of soluble electron donors or by the PQ-reducing activity of NDA2 in nutrient-limited conditions. We discuss these data in relation to limitations and biotechnological improvement of hydrogen photoproduction in microalgae.