cGMP-dependent protein kinase I, the circadian clock, sleep and learning (original) (raw)

Circadian Clock-Controlled Regulation of cGMP-Protein Kinase G in the Nocturnal Domain

The Journal of Neuroscience

The suprachiasmatic nucleus (SCN) circadian clock exhibits a recurrent series of dynamic cellular states, characterized by the ability of exogenous signals to activate defined kinases that alter clock time. To explore potential relationships between kinase activation by exogenous signals and endogenous control mechanisms, we examined clock-controlled protein kinase G (PKG) regulation in the mammalian SCN. Signaling via the cGMP-PKG pathway is required for light-or glutamate (GLU)-induced phase advance in late night. Spontaneous cGMP-PKG activation occurred at the end of subjective night in free-running SCN in vitro. Phasing of the SCN rhythm in vitro was delayed by ϳ3 hr after treatment with guanylyl cyclase (GC) inhibitors, PKG inhibition, or antisense oligodeoxynucleotide (␣ODN) specific for PKG, but not PKA inhibitor or mismatched ODN. This sensitivity to GC-PKG inhibition was limited to the same 2 hr time window demarcated by clock-controlled activation of cGMP-PKG. Inhibition of the cGMP-PKG pathway at this time caused delays in the phasing of four endogenous rhythms: wheel-running activity, neuronal activity, cGMP, and Per1. Timing of the cGMP-PKGnecessary window in both rat and mouse depended on clock phase, established by the antecedent light/dark cycle rather than solar time. Because behavioral, neurophysiological, biochemical, and molecular rhythms showed the same temporal sensitivities and qualitative responses, we predict that clock-regulated GC-cGMP-PKG activation may provide a necessary cue as to clock state at the end of the nocturnal domain. Because sensitivity to phase advance by light-GLU-activated GC-cGMP-PKG occurs in juxtaposition, these signals may induce a premature shift to this PKG-necessary clock state.

Rats with minimal hepatic encephalopathy show reduced cGMP-dependent protein kinase activity in hypothalamus correlating with circadian rhythms alterations

Patients with liver cirrhosis show disturbances in sleep and in its circadian rhythms which are an early sign of minimal hepatic encephalopathy (MHE). The mechanisms of these disturbances are poorly understood. Rats with porta-caval shunt (PCS), a model of MHE, show sleep disturbances reproducing those of cirrhotic patients. The aims of this work were to characterize the alterations in circadian rhythms in PCS rats and analyze the underlying mechanisms. To reach these aims, we analyzed in control and PCS rats: (a) daily rhythms of spontaneous and rewarding activity and of temperature, (b) timing of the onset of activity following turning-off the light, (c) synchronization to light after a phase advance and (d) the molecular mechanisms contributing to these alterations in circadian rhythms. PCS rats show altered circadian rhythms of spontaneous and rewarding activities (wheel running). PCS rats show more rest bouts during the active phase, more errors in the onset of motor activity and need less time to re-synchronize after a phase advance than control rats. Circadian rhythm of body temperature is also slightly altered in PCS rats. The internal period length (tau) of circadian rhythm of motor activity is longer in PCS rats. We analyzed some mechanisms by which hypothalamus modulate circadian rhythms. PCS rats show increased content of cGMP in hypothalamus while the activity of cGMP-dependent protein kinase was reduced by 41% compared to control rats. Altered cGMP-PKG pathway in hypothalamus would contribute to altered circadian rhythms and synchronization to light.

Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep

Sleep

The finding that deletion or mutation of core circadian clock genes in both mice and flies induce unexpected alterations in sleep amount, sleep architecture and the recovery response to sleep deprivation, has led to new insights into functions of the circadian system that extend beyond its role as a regulator of the timing of the sleep-wake cycle. A key transcription factor in the transcriptional/translational feedback loop of mammalian circadian genes is BMAL1/Mop3, a heterodimeric partner to CLOCK. It was previously shown that mice deficient in the BMAL1/Mop3 gene become immediately arrhythmic in constant darkness and have reduced locomotor activity levels under entrained and constant conditions. In this study, we tested the hypothesis that the mammalian BMAL1/Mop3 gene would have regulatory effects on sleep-wake patterns. In mice with targeted deletion of the BMAL1/Mop3 gene, EEG/EMG sleep-wake patterns were recorded under entrained and free-running conditions as well as followin...

Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation

Sleep, 2005

The finding that deletion or mutation of core circadian clock genes in both mice and flies induce unexpected alterations in sleep amount, sleep architecture and the recovery response to sleep deprivation, has led to new insights into functions of the circadian system that extend beyond its role as a regulator of the timing of the sleep-wake cycle. A key transcription factor in the transcriptional/translational feedback loop of mammalian circadian genes is BMAL1/Mop3, a heterodimeric partner to CLOCK. It was previously shown that mice deficient in the BMAL1/Mop3 gene become immediately arrhythmic in constant darkness and have reduced locomotor activity levels under entrained and constant conditions. In this study, we tested the hypothesis that the mammalian BMAL1/Mop3 gene would have regulatory effects on sleep-wake patterns. In mice with targeted deletion of the BMAL1/Mop3 gene, EEG/EMG sleep-wake patterns were recorded under entrained and free-running conditions as well as followin...

Involvement of cGMP in cellular melatonin responses*

Biology of the Cell, 1999

Melatonin can enhance and suppress constitutive protein secretion from murine melanoma M2R cells in vitro in a cholera-toxin (CTX) sensitive process. In a number of tissues melatonin has been shown to modulate cGMP levels. The involvement of cGMP in melatonin responses in the melanoma cells was investigated. The effects of melatonin on melanoma cells cGMP and cGMP-phosphodiesterase activity and the effects of cGMP analogs on the melatonin-mediated modulation of protein secretion were studied. Melatonin reduced cGMP levels in the melanoma cells. CTX treatment had a similar and non-additive effect. The effects of melatonin on protein secretion were abrogated by ,activation of cGMP-dependent protein kinases. In addition, melatonin inhibited cGMP phosphodiesterase activity in these cells. The data presented indicate that inhibition of cGMP via a CTX sensitive G protein may be a major signal transduction pathway used by melatonin in melanoma cells.

Franken P, Thomason R, Heller HC, O'Hara BF. A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci 8: 87

BMC Neuroscience

Background: We have previously reported that the expression of circadian clock-genes increases in the cerebral cortex after sleep deprivation (SD) and that the sleep rebound following SD is attenuated in mice deficient for one or more clock-genes. We hypothesized that besides generating circadian rhythms, clock-genes also play a role in the homeostatic regulation of sleep. Here we follow the time course of the forebrain changes in the expression of the clock-genes period (per)-1, per2, and of the clock-controlled gene albumin D-binding protein (dbp) during a 6 h SD and subsequent recovery sleep in three inbred strains of mice for which the homeostatic sleep rebound following SD differs. We reasoned that if clock genes are functionally implicated in sleep homeostasis then the SD-induced changes in gene expression should vary according to the genotypic differences in the sleep rebound. Results: In all three strains per expression was increased when animals were kept awake but the rate of increase during the SD as well as the relative increase in per after 6 h SD were highest in the strain for which the sleep rebound was smallest; i.e., DBA/2J (D2). Moreover, whereas in the other two strains per1 and per2 reverted to control levels with recovery sleep, per2 expression specifically, remained elevated in D2 mice. dbp expression increased during the light period both during baseline and during SD although levels were reduced during the latter condition compared to baseline. In contrast to per2, dbp expression reverted to control levels with recovery sleep in D2 only, whereas in the two other strains expression remained decreased. Conclusion: These findings support and extend our previous findings that clock genes in the forebrain are implicated in the homeostatic regulation of sleep and suggest that sustained, high levels of per2 expression may negatively impact recovery sleep.