Effects of Antioxidant Supplements on the Survival and Differentiation of Stem Cells (original) (raw)
Related papers
Oxidative stress of neural, hematopoietic, and stem cells: protection by natural compounds
Rejuvenation …, 2007
During natural aging, adult stem cells are known to have a reduced restorative capacity and are more vulnerable to oxidative stress resulting in a reduced ability of the body to heal itself. We report here that the proprietary natural product formulation, NT020, previously found to promote proliferation of human hematopoietic stem cells, reduced oxidative stress-induced apoptosis of murine neurons and microglial cells in vitro. Furthermore, when taken orally for 2 weeks, cultured bone marrow stem cells from these mice exhibited a dose-related reduction of oxidative stress-induced apoptosis. This preclinical study demonstrates that NT020 can act to promote healing via an interaction with stem cell populations and forms the basis of conducting a clinical trial to determine if NT020 exhibits similar health promoting effects in humans when used as a dietary supplement.
Upregulation of mitochondrial function and antioxidant defense in the differentiation of stem cells
Biochimica et Biophysica Acta (BBA) - General Subjects, 2010
Stem cell research has received increasing attention due to their invaluable potentials in the clinical applications to cure degenerative diseases, genetic disorders and even cancers. A great number of studies have been conducted with an aim to elucidate the molecular mechanisms involved in the regulation of selfrenewal of stem cells and the mysterious circuits guiding them to differentiate into all kinds of progenies that can replenish the cell pools. However, little effort has been made in studying the metabolic aspects of stem cells. Mitochondria play essential roles in mammalian cells in the generation of ATP, Ca 2+ homeostasis, compartmentalization of biosynthetic pathways and execution of apoptosis. Considering the metabolic roles of mitochondria, they must be also critical in stem cells. This review is primarily focused on the biogenesis and bioenergetic function of mitochondria in the differentiation process and metabolic features of stem cells. In addition, the involvement of reactive oxygen species and hypoxic signals in the regulation of stem cell pluripotency and differentiation is also discussed.
Stem Cells and Development, 2010
Oxidative stress, associated with either normal metabolism or disease conditions, affects many cellular activities. Most of our knowledge in this fi eld is derived from fully differentiated cells. Embryonic stem cells (ESCs) have attracted enormous attention for their potential applications in cell therapy, but little is known about how the unique properties of ESCs are affected by oxidative stress. We have investigated the effects of oxidative stress induced by H 2 O 2 on several cellular activities of mouse ESCs. Like differentiated cells, ESCs are sensitive to H 2 O 2 -induced apoptosis when continuously exposed to H 2 O 2 at the concentrations above 150 μM. However, unlike differentiated cells, ESCs are resistant to oxidative stress induced senescence. This is demonstrated by the results that when subjected to a short-term sublethal concentration and duration of H 2 O 2 treatment, fi broblasts enter the senescent state with enlarged fl attened cell morphology concurrent with increased expression of senescence marker p21. On the contrary, ESCs neither show any sign of senescence nor express p21. Instead, ESCs enter a transient cell cycle arrest state, but they have remarkable recovery capacity to resume the normal cell proliferation rate without losing the ability of self-renewal and pluripotency. Our results further revealed that H 2 O 2 inhibits cell adhesion and the expression of cyclin D1, which are early events proceeding apoptosis and cell cycle arrest. In conclusion, our data suggest that ESCs are sensitive to H 2 O 2 toxicity, but may have unique mechanisms that prevent H 2 O 2 -induced senescence and protect self-renewal capacity.
Cytoprotective effects of antioxidant supplementation on mesenchymal stem cell therapy
Cellular Physiology, 2020
Mesenchymal stem cells (MSCs) are earmarked as perfect candidates for cell therapy and tissue engineering due to their capacity to differentiate into different cell types. However, their potential for application in regenerative medicine declines when the levels of the reactive oxygen and nitrogen species (RONS) increase from the physiological levels, a phenomenon which is at least inevitable in ex vivo cultures and air-exposed damaged tissues. Increased levels of RONS can alter the patterns of osteogenic and adipogenic differentiation and inhibit proliferation, as well. Besides, oxidative stress enhances senescence and cell death, thus lowering the success rates of the MSC engraftment. Hence, in this review, we have selected some representatives of antioxidants and newly emerged nano antioxidants in three main categories, including chemical compounds, biometabolites, and protein precursors/ proteins, which are proved to be effective in the treatment of MSCs. We will focus on how antioxidants can be applied to optimize the clinical usage of the MSCs and their associated signaling pathways. We have also reviewed several paralleled properties of some antioxidants and nano antioxidants which can be simultaneously used in real-time imaging, scaffolding techniques, and other applications in addition to their primary antioxidative function. K E Y W O R D S anoikis, apoptosis, autophagy, differentiation, nano antioxidant, oxidative stress
Effects of antioxidants on the quality and genomic stability of induced pluripotent stem cells
Scientific Reports, 2014
Effects of antioxidants on the quality and genomic stability of induced pluripotent stem (iPS) cells were investigated with two human iPS cell lines (201B7 and 253G1). Cells used in this study were expanded from a single colony of each cell line with the addition of proprietary antioxidant supplement or homemade antioxidant cocktail in medium, and maintained in parallel for 2 months. The cells grew well in all culture conditions and kept ''stemness''. Although antioxidants modestly decreased the levels of intracellular reactive oxygen species, there were no differences in the expression of 53BP1 and pATM, two critical molecules related with DNA damage and repair, under various culture conditions. CGH analysis showed that the events of genetic aberrations were decreased only in the 253G1 iPS cells with the addition of homemade antioxidant cocktail. Long-term culture will be necessary to confirm whether low dose antioxidants improve the quality and genomic stability of iPS cells. Results Low dose antioxidants did not affect the growth and ''stemness'' of iPS cells. We successfully maintained the iPS cell lines for 2 months by regularly passage. The shape and growth of iPS cell colonies were not obviously changed by adding either proprietary antioxidant supplement from Sigma-Aldrich (AOS) or homemade antioxidant cocktail (AOH) at relative low concentrations in culture medium for 2 months of follow-up. Immunostaining showed that all of these iPS cell colonies clearly expressed Oct3/4, Nanog, SSEA-4, and ALP
Journal of advanced research, 2018
Reactive oxygen species (ROS) are produced as by-products of several intracellular metabolic pathways and are reduced to more stable molecules by several protective pathways. The presence of high levels of ROS can be associated with disturbance of cell function and could lead to apoptosis. The presence of ROS within the physiological range has many effects on several signalling pathways. In stem cells, this role can range between keeping the potency of the naive stem cells to differentiation towards a certain lineage. In addition, the level of certain ROS would change according to the differentiation stage. For example, the presence of ROS can be associated with increasing the proliferation of mesenchymal stem cells, decreasing the potency of embryonic stem cells and adding to the genomic stability of induced pluripotent stem cells. ROS can enhance the differentiation of stem cells into cardiomyocytes, adipocytes, endothelial cells, keratinocytes and neurons. In the meantime, ROS in...
Oxidative stress promotes exit from the stem cell state and spontaneous neuronal differentiation
Oncotarget, 2018
Reactive oxygen species (ROS) play important roles in fundamental cellular processes such as proliferation and survival. Here we investigated the effect of oxidative stress on stem cell maintenance and neuronal differentiation in a human embryonic stem cell (hESC) model, Ntera2 (NT2). CM-H2DCFDA and DHE assays confirmed that the oxidizing agent paraquat could induce a high level of ROS in NT2 cells. Quantitative PCR, Western blotting and immunocytochemistry showed that paraquat-induced oxidative stress suppressed the expression of stemness markers, including NANOG, OCT4 and TDGF1, whereas it enhanced the spontaneous expression of neuronal differentiation markers such as PAX6, NEUROD1, HOXA1, NCAM, GFRA1 and TUJ1. The treated cells even exhibited a strikingly different morphology from control cells, extending out long neurite-like processes. The neurogenic effect of ROS on stem cell behaviour was confirmed by the observations that the expression of neuronal markers in the paraquat-tr...
Oxidative stress-induced biomarkers for stem cell-based chemical screening
Preventive Medicine, 2012
Stem cells have been considered for their potential in pharmaceutical research, as well as for stem cell-based therapy for many diseases. Despite the potential for their use, the challenge remains to examine the safety and efficacy of stem cells for their use in therapies. Oxidative stress, due to oxidant/antioxidant imbalance has been implicated in triggering intracellular signal transduction pathways for a variety of cellular processes, including inflammation, cell cycle progression, apoptosis, differentiation and a number of diseases of aging. Oxidative stress has been strongly implicated in the functional regulation of cell behavior of stem cells. Therefore, development of rapid and sensitive biomarkers, related to oxidative stress is of growing importance in stem cell-based therapies for treating various diseases. Free radicals are involved in the functional regulation of stem cells and lead to metabolic changes. An evaluation of antioxidant states reducing equivalents like GSH and superoxide dismutase (SOD), as well as reactive oxygen species (ROS) and nitric oxide (NO) generation, can be effective markers in stem cell-based therapies. In addition, oxidative adducts, such as 4hydroxynonenal, can be reliable markers to detect cellular changes during self-renewal and differentiation of stem cells. This review highlights the biomarker development to monitor oxidative stress response for stem cell-based chemical screening.