The role of calmodulin for inositol 1,4,5-trisphosphate receptor function (original) (raw)
Related papers
FEBS Letters, 1999
Our previous studies have demonstrated that calmodulin binds to IP3R type 1 (IP3R1) in a Ca2+ dependent manner, which suggests that calmodulin regulates the IP3R1 channel. In the present study, we investigated real‐time kinetics of interactions between calmodulin and IP3R1 as well as effects of calmodulin on IP3‐induced Ca2+ release by purified and reconstituted IP3R1. Kinetic analysis revealed that calmodulin binds to IP3R1 in a Ca2+ dependent manner and that both association and dissociation phase consist of two components with time constants of k a=4.46×102 and >104 M−1 s−1, k d=1.44×10−2 and 1.17×10−1 s−1. The apparent dissociation constant was calculated to be 27.3 μM. The IP3‐induced Ca2+ release through the purified and reconstituted IP3R1 was inhibited by Ca2+/calmodulin, in a dose dependent manner. We interpret our findings to mean that calmodulin binds to IP3R1 in a Ca2+ dependent manner to exert inhibitory effect on IP3R channel activity. This event may be one of the m...
Proceedings of the National Academy of Sciences, 1997
The interactions between calmodulin, inositol 1,4,5-trisphosphate (InsP3), and pure cerebellar InsP3 receptors were characterized by using a scintillation proximity assay. In the absence of Ca2+, 125I-labeled calmodulin reversibly bound to multiple sites on InsP3 receptors and Ca2+ increased the binding by 190% +/- 10%; the half-maximal effect occurred when the Ca2+ concentration was 184 +/- 14 nM. In the absence of Ca2+, calmodulin caused a reversible, concentration-dependent (IC50 = 3.1 +/- 0.2 microM) inhibition of [3H]InsP3 binding by decreasing the affinity of the receptor for InsP3. This effect was similar at all Ca2+ concentrations, indicating that the site through which calmodulin inhibits InsP3 binding has similar affinities for calmodulin and Ca2+-calmodulin. Calmodulin (10 microM) inhibited the Ca2+ release from cerebellar microsomes evoked by submaximal, but not by maximal, concentrations of InsP3. Tonic inhibition of InsP3 receptors by the high concentrations of calmodulin within cerebellar Purkinje cells may account for their relative insensitivity to InsP3 and limit spontaneous activation of InsP3 receptors in the dendritic spines. Inhibition of InsP3 receptors by calmodulin at all cytosolic Ca2+ concentrations, together with the known redistribution of neuronal calmodulin evoked by protein kinases and Ca2+, suggests that calmodulin may also allow both feedback control of InsP3 receptors and integration of inputs from other signaling pathways.