Three-dimensional hydrogel cell culture systems for modeling neural tissue (original) (raw)

2009, Dissertation Thesis

Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was designed for use as a tool to predict the transport and processing that occurs prior to drug uptake in the central nervous system (CNS), and to predict BBB permeability. Electrochemical techniques and immunohistochemistry were used to validate this model and provide detailed information about cellular organization and function. Electrochemical impedance spectroscopy (EIS) provided evidence that endothelial cells cultured in the presence of astrocytes formed tight junctions capable of occluding the flow of electrical current. In a second series of experiments, a microglia-astrocyte co-culture system was developed to assess the effects of glial cells on electrode impedance recorded from neural prosthetic devices in vitro. Impedance measurements were compared with confocal images to determine the effects of glial cell density and cell type on electrode performance. The results indicate that EIS data can be used to model components of the reactive cell responses in brain tissue, and that impedance measurements recorded in vitro can be compared to measurements recorded in vivo. Taken together, these results demonstrate that alginate hydrogels can be used for the creation of 3-D neural cell scaffolds, and that such cell scaffolds can be used to model a variety of three-dimensional neural tissues in vitro, that cannot be studied in 2-D cultures.