Bone Marrow Mesenchymal Cells Improve Muscle Function in a Skeletal Muscle Re-Injury Model (original) (raw)

Muscle Function in a Skeletal Muscle Re- Injury Model

2016

Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC) injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm 2 , p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm 2 , p<0.05 respectively). Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

Differentiation and regeneration potential of mesenchymal progenitor cells derived from traumatized muscle tissue

Journal of cellular and molecular medicine, 2011

Mesenchymal stem cell (MSC) therapy is a promising approach to promote tissue regeneration by either differentiating the MSCs into the desired cell type or by using their trophic functions to promote endogenous tissue repair. These strategies of regenerative medicine are limited by the availability of MSCs at the point of clinical care. Our laboratory has recently identified multipotent mesenchymal progenitor cells (MPCs) in traumatically injured muscle tissue, and the objective of this study was to compare these cells to a typical population of bone marrow-derived MSCs. Our hypothesis was that the MPCs exhibit multilineage differentiation and expression of trophic properties that make functionally them equivalent to bone marrow-derived MSCs for tissue regeneration therapies. Quantitative evaluation of their proliferation, metabolic activity, expression of characteristic cell-surface markers and baseline gene expression profile demonstrate substantial similarity between the two cell types. The MPCs were capable of differentiation into osteoblasts, adipocytes and chondrocytes, but they appeared to demonstrate limited lineage commitment compared to the bone-marrow derived MSCs. The MPCs also exhibited trophic (i.e., immunoregulatory and pro-angiogenic) properties that were comparable to those of MSCs. These results suggest that the traumatized muscle-derived MPCs may not be a direct substitute for bone marrow-derived MSCs. However, because of their availability and abundance, particularly following orthopaedic injuries when traumatized muscle is available to harvest autologous cells, MPCs are a promising cell source for regenerative medicine therapies designed to take advantage of their trophic properties.

Long-Term Contribution of Human Bone Marrow Mesenchymal Stromal Cells to Skeletal Muscle Regeneration in Mice

Cell Transplantation, 2011

Mesenchymal stromal cells (MSCs) are attractive for cellular therapy of muscular dystrophies as they are easy to procure, can be greatly expanded ex vivo, and contribute to skeletal muscle repair in vivo. However, detailed information about the contribution of bone marrow (BM)-derived human MSCs (BM-hMSCs) to skeletal muscle regeneration in vivo is very limited. Here, we present the results of a comprehensive study of the fate of LacZ-tagged BM-hMSCs following implantation in cardiotoxin (CTX)-injured tibialis anterior muscles (TAMs) of immunodeficient mice. β-Galactosidase-positive (β-gal + ) human-mouse hybrid myofibers (HMs) were counted in serial cross sections over the full length of the treated TAMs of groups of mice at monthly intervals. The number of human cells was estimated using chemiluminescence assays. While the number of human cells declined gradually to about 10% of the injected cells at 60 days after transplantation, the number of HMs increased from day 10 onwards, reaching 104 ± 39.1 per TAM at 4 months postinjection. β-gal + cells and HMs were distributed over the entire muscle, indicating migration of the former from the central injection site to the ends of the TAMs. The identification of HMs that stained positive for human spectrin suggests myogenic reprogramming of hMSC nuclei. In summary, our findings reveal that BM-hMSCs continue to participate in the regeneration/remodeling of CTX-injured TAMs, resulting in ±5% HMs at 4 months after damage induction. Moreover, donor-derived cells were shown to express genetic information, both endogenous and transgenic, in recipient myofibers.

Stem Cells for the Treatment of Skeletal Muscle Injury

Clinics in Sports Medicine, 2009

Skeletal muscle injuries are extremely common, accounting for up to 35%-55% of all sports injuries and quite possibly affecting all musculoskeletal traumas. These injuries result in the formation of fibrosis, which may lead to the development of painful contractures, increases patients' risk for repeat injuries, and limits their ability to return to a baseline or pre-injury level of function. The development of successful therapies for these injuries must consider the pathophysiology of these musculoskeletal conditions. We discuss the direct use of muscle-derived stem cells and some key cell population dynamics as well as the use of clinically applicable modalities that may enhance the local supply of stem cells to the zone of injury by promoting angiogenesis.

Mesenchymal progenitor cells derived from traumatized human muscle

Journal of Tissue Engineering and Regenerative Medicine, 2009

cell-based tissue engineering and regenerative medicine. Currently, clinical applications for MSCs require additional surgical procedures to harvest the autologous MSCs (i.e. from bone marrow) or commercial allogeneic alternatives. We have recently identified a population of mesenchymal progenitor cells (MPCs) in traumatized muscle tissue that has been surgically debrided from traumatic orthopaedic extremity wounds. The purpose of this study was to evaluate whether MPCs derived from traumatized muscle may provide a clinical alternative to bone-marrow MSCs, by comparing their morphology, proliferation capacity, cell surface epitope profile and differentiation capacity. After digesting the muscle tissue with collagenase, the MPCs were enriched by a direct plating technique. The morphology and proliferation rate of the muscle-derived MPCs was similar to bone-marrow derived MSCs. Both populations expressed cell surface markers characteristic for MSCs (CD 73, CD 90 and CD105), and did not express markers typically absent on MSCs (CD14, CD34 and CD45). After 21 days in specific differentiation media, the histological staining and gene expression of the MPCs and MSCs was characteristic for differentiation into osteoblasts, chondrocytes and adipocytes, but not into myoblasts. Our findings demonstrate that traumatized muscle-derived MPCs exhibit a similar phenotype and resemble MSCs derived from the bone marrow. MPCs harvested from traumatized muscle tissue may be considered for applications in tissue engineering and regenerative medicine following orthopaedic trauma requiring circumferential debridement.

Acceleration of Skeletal Muscle Regeneration in a Rat Skeletal Muscle Injury Model by Local Injection of Human Peripheral Blood-Derived CD133-Positive Cells

Stem Cells, 2009

Muscle injuries in sport activities can pose challenging problems in traumatology and sports medicine. The best treatment for muscle injury has not been clearly established except for the conservative treatment that is routinely performed. We investigated the potential of human adult CD1331 cells to contribute to skeletal muscle regeneration in an athymic rat model. We tested whether CD1331 cells locally transplanted to the skeletal muscle lacerated models could (a) induce vasculogenesis/angiogenesis, (b) differentiate into endothelial and myogenic lineages, and (c) finally promote histological and functional skeletal myogenesis. Granulocyte colony stimulating factor-mobilized peripheral blood (PB) CD1331 cells, PB mononuclear cells, or phosphate-buffered saline was locally injected after creating a muscle laceration in the tibialis anterior muscle in athymic rats. After treatment, histological and functional skeletal myogenesis was observed significantly in the CD1331 group. The injected CD1331 cells differentiated into endothelial and myogenic lineages. Using real-time polymerase chain reaction analysis, we found that the gene expressions related to microenvironment conduction for host angiogenesis, fibrosis, and myogenesis were ideally up/downregulated. Our results show that CD1331 cells have the potential to enhance the histological and functional recovery from skeletal muscle injury rather via indirect contribution to environment conduction for muscular regeneration. It would be relatively easy to purify this cell fraction from PB, which could be a feasible and attractive autologous candidate for skeletal muscle injuries in a clinical setting. These advantages could accelerate the progression of cell-based therapies for skeletal muscle injuries from laboratory to clinical implementation. STEM CELLS 2009;27:949-960

Biological approaches to improve skeletal muscle healing after injury and disease

Birth Defects Research Part C: Embryo Today: Reviews, 2012

Skeletal muscle injury and repair are complex processes, including wellcoordinated steps of degeneration, inflammation, regeneration, and fibrosis. We have reviewed the recent literature including studies by our group that describe how to modulate the processes of skeletal muscle repair and regeneration. Antiinflammatory drugs that target cyclooxygenase-2 were found to hamper the skeletal muscle repair process. Muscle regeneration phase can be aided by growth factors, including insulin-like growth factor-1 and nerve growth factor, but these factors are typically short-lived, and thus more effective methods of delivery are needed. Skeletal muscle damage caused by traumatic injury or genetic diseases can benefit from cell therapy; however, the majority of transplanted muscle cells (myoblasts) are unable to survive the immune response and hypoxic conditions. Our group has isolated neonatal skeletal muscle derived stem cells (MDSCs) that appear to repair muscle tissue in a more effective manner than myoblasts, most likely due to their better resistance to oxidative stress. Enhancing antioxidant levels of MDSCs led to improved regenerative potential. It is becoming increasingly clear that stem cells tissue repair by direct differentiation and paracrine effects leading to neovascularization of injured site and chemoattraction of host cells. The factors invoked in paracrine action are still under investigation. Our group has found that angiotensin II receptor blocker (losartan) significantly reduces fibrotic tissue formation and improves repair of murine injured muscle. Based on these data, we have conducted a case study on two hamstring injury patients and found that losartan treatment was well tolerated and possibly improved recovery time. We believe this medication holds great promise to optimize muscle repair in humans. Birth Defects Research (Part C) 96:82-94, View this article online at (wileyonlinelibrary.com).

Mesenchymal Stem Cell Therapy for Sports Injuries - From Research to Clinical Practice

Sains Malaysiana, 2020

The number of sports-related injuries is on the rise as more people are involved in sports, especially the extreme sports that are prone to injury. A serious sports injury might end the career of an athlete. Thus, prompt and effective treatment is very important for these injuries. Cell-based therapy is becoming more popular as a potential new treatment for sports injuries that are refractory to conventional therapy. Mesenchymal stem cells (MSCs) are commonly used in the treatment of sports injuries as they are safe and will not be rejected by the recipient. MSCs secrete paracrine factors that modulate the host immune response, promote angiogenesis, enhance cell migration and survival as well as prevent fibrosis. The safety and efficacy of MSC therapy in treating sports injuries involving the muscle, ligament, tendon, bone, cartilage, and nervous tissues have been demonstrated in many preclinical and clinical studies. However, more studies especially the large-scale randomized clinical trial need to be done in order to determine the adequacy of MSC therapy in treating different sports injuries. In this review, we discussed the treatment for sports injuries, focusing on MSC therapy, using data from preclinical and clinical studies.

Tissue engineered strategies for skeletal muscle injury

2012

Skeletal muscle injuries are common in athletes, occurring with direct and indirect mechanisms and marked residual effects, such as severe long-term pain and physical disability. Current therapy consists of conservative management including RICE protocol (rest, ice, compression and elevation), nonsteroidal anti-inflammatory drugs, and intramuscular corticosteroids. However, current management of muscle injuries often does not provide optimal restoration to preinjury status. New biological therapies, such as injection of platelet-rich plasma and stem-cell-based therapy, are appealing. Although some studies support PRP application in muscle-injury management, reasons for concern persist, and further research is required for a standardized and safe use of PRP in clinical practice. The role of stem cells needs to be confirmed, as studies are still limited and inconsistent. Further research is needed to identify mechanisms involved in muscle regeneration and in survival, proliferation, and differentiation of stem cells.