The Solar Scout: A Solar Sail Asteroid Prospector (original) (raw)
Related papers
2018
Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, ”If you’ve seen one asteroid, you’ve seen one asteroid”, meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mission to design th...
Near Earth Asteroid Scout Solar Sail Thrust and Torque Model
2017
The Near Earth Asteroid (NEA) Scout is a solar sail mission whose objective is to scout at least one Near Earth Asteroid to help prepare for human missions to Near Earth Asteroids. NEA Scout will launch as a secondary payload on the first SLS-Orion mission. NEA Scout will perform a small trim maneuver shortly after deploy from the spent SLS upper stage using a cold gas propulsion system, but from that point on will depend entirely on the solar sail for thrust. As such, it is important to accurately characterize the thrust of the sail in order to achieve mission success. Additionally, the solar sail creates a relatively large solar disturbance torque that must be mitigated. For early mission design studies a flat plate model of the solar sail with a fixed center of pressure was adequate, but as mission concepts and the sail design matured, greater fidelity was required. Here we discuss the progress to a three-dimensional sail model that includes the effects of tension and thermal def...
Small Spacecraft Solar Sailing for Small Solar System Body Multiple Rendezvous and Landing
2018
Physical interaction with small solar system bodies (SSSB) is the next step in planetary science, planetary in-situ resource utilization (ISRU), and planetary defense (PD). It requires a broader understanding of the surface properties of the target objects, with particular interest focused on those near Earth. Knowledge of composition, multi-scale surface structure, thermal response, and interior structure is required to design, validate and operate missions addressing these three fields. The current level of understanding is occasionally simplified into the phrase, "If you've seen one asteroid, you've seen one Asteroid", meaning that the in-situ characterization of SSSBs has yet to cross the threshold towards a robust and stable scheme of classification. This would enable generic features in spacecraft design, particularly for ISRU and science missions. Currently, it is necessary to characterize any potential target object sufficiently by a dedicated pre-cursor mi...
JAXA’s Trojan Asteroids Mission: Trajectory Design of the Solar Power Sail and its Lander
2017
In this paper we use dynamical system tools to design trajectories in the vicinity of Trojan asteroids for both: JAXA’s solar power sail and its lander. The current JAXA baseline considers a solar power sail hovering a Trojan asteroid at 40 km from its surface. Which will then descend to 1 km of the surface to release the lander. First we will exploit solar radiation pressure to place a solar power sail in orbit around the asteroid and illustrate how the effects of changing the sail orientation can enhance the hovering opportunities. Second we will focus on the lander release, performing a sensitivity analysis on its deployment velocity together with possible bouncing trajectory. To model the dynamics of the solar power sail and the lander we use the augmented Hill three body problem for the far gravity field dynamics and a perturbed two-body problem approximating the asteroid’s as triaxial ellipsoid for the close gravity field dynamics.
SSC 13-VI-7 Asteroid Prospector
2013
This paper presents the overall design of a small reusable spacecraft capable of flying to an asteroid from low earth orbit, operating near the surface of the asteroid and returning samples to low earth orbit. The spacecraft is in a 6U CubeSat form factor and designed to visit near asteroids as far as 1.3 AU from the sun. Deep space missions are traditionally large and expensive, requiring considerable manpower for operations, use of the Deep Space network for navigation, and costly but slow rad-hard electronics. Several new technologies make this mission possible and affordable in such a small form factor: a 3 cm ion engine from Busek for the low-thrust spirals, an autonomous optical navigation system, precision miniature reaction wheels, high performance and nontoxic green propellant (HGPG) thrusters, and Honeywell’s new Dependable Multiprocessor technology for radiation tolerance. A complete spacecraft design is considered and the paper includes details of the control and guidanc...