Evaluation of circulating EBV microRNA BART2-5p in facilitating early detection and screening of nasopharyngeal carcinoma (original) (raw)
Related papers
Comprehensive Profiling of Epstein-Barr Virus MicroRNAs in Nasopharyngeal Carcinoma
Journal of Virology, 2009
Epstein-Barr Virus (EBV) establishes a long-term latent infection and is associated with a number of human malignancies that are thought to arise from deregulation of different stages of the viral life cycle. Recently, a large number of microRNAs (miRNAs) have been described for EBV, and it has been suggested that their expression may vary between the different latency states found in normal and malignant tissue. To date, however, no technique has been utilized to comprehensively and quantitatively test this idea by profiling expression of the EBV miRNAs in primary infected tissues. We describe here a multiplex reverse transcription-PCR assay that allows the profiling of 39 of the 40 known mature EBV miRNAs from as little as 250 ng of RNA. With this approach, we present a comprehensive profile of EBV miRNAs in primary nasopharyngeal carcinoma (NPC) tumors including estimates of miRNA copy number per tumor cell. This is the first comprehensive profiling of EBV miRNAs in any EBVassociated tumor. In contrast to previous suggestions, we show that the BART-derived miRNAs are present in a wide range of copy numbers from <10 3 per cell in both primary tumors and the widely used NPC-derived C666-1 cell line. However, we confirm the hypothesis that the BHRF1 miRNAs are not expressed in NPC. Lastly, we demonstrate that EBV miRNA expression in the widely used NPC line C666-1 is, with some caveats, broadly representative of primary NPC tumors.
Virology Journal, 2013
Background Because latent Epstein Barr (EBV)-infection is a specific characteristic of malignant nasopharyngeal carcinoma (NPC), various molecules of viral origin are obvious candidate biomarkers in this disease. In a previous study, we could show in a few clinical samples that it was possible to detect a category of EBV microRNAs called miR-BARTs in the plasma of at least a fraction of NPC patients. The first aim of the present study was to investigate the status of circulating miR-BART17-5p (one of the miR-BARTs hereafter called miR-BART17) and EBV DNA in a larger series of NPC plasma samples. The second aim was to determine whether or not circulating miR-BART17 was carried by plasma exosomes. Patients and methods Plasma samples were collected from 26 NPC patients and 10 control donors, including 9 patients with non-NPC Head and Neck squamous cell carcinoma and one healthy EBV carrier. Concentrations of miR-BART17 and two cellular microRNAs (hsa-miR-16 and -146a) were assessed by ...
Journal of Virology, 2016
Epstein-Barr virus (EBV) expresses few viral proteins in nasopharyngeal carcinoma (NPC) but high levels of BamHI-A rightward transcripts (BARTs), which include long noncoding RNAs (lncRNAs) and BART microRNAs (miRNAs). It is hypothesized that the mechanism for regulation of BARTs may relate to EBV pathogenesis in NPC. We showed that nuclear factor-κB (NF-κB) activates the BART promoters and modulates the expression of BARTs in EBV-infected NPC cells but that introduction of mutations into the putative NF-κB binding sites abolished activation of BART promoters by NF-κB. Binding of p50 subunits to NF-κB sites in the BART promoters was confirmed in electrophoretic mobility shift assays (EMSA) and further demonstrated in vivo using chromatin immunoprecipitation (ChIP) analysis. Expression of BART miRNAs and lncRNAs correlated with NF-κB activity in EBV-infected epithelial cells, while treatment of EBV-harboring NPC C666-1 cells with aspirin (acetylsalicylic acid [ASA]) and the IκB kinas...
International Journal of Cancer, 2018
Cell-free microRNA (miRNA) in biofluids released by tumors in either protein or vesicle-bound form, represent promising minimally-invasive cancer biomarkers. However, a highly abundant non-tumor background in human plasma and serum complicates the discovery and detection of tumor-selective circulating miRNAs. We performed small RNA sequencing on serum and plasma RNA from Nasopharyngeal Carcinoma (NPC) patients. Collectively, Epstein Barr virus-encoded miRNAs, more so than endogenous miRNAs, signify presence of NPC. However, RNAseq-based EBV miRNA profiles differ between NPC patients, suggesting inter-tumor heterogeneity or divergent secretory characteristics. We determined with sensitive qRT-PCR assays that EBV miRNAs BART7-3p, BART9-3p and BART13-3p are actively secreted by C666.1 NPC cells bound to extracellular vesicles (EVs) and soluble ribonucleoprotein complexes. Importantly, these miRNAs are expressed in all primary NPC tumor biopsies and readily detected in nasopharyngeal brushings from both early and late-stage NPC patients. Increased levels of BART7-3p, BART9-3p and particularly BART13-3p, distinguish NPC patient sera from healthy controls. Receiver operating characteristic curve analysis using sera from endemic NPC patients, other head and neck cancers and individuals with asymptomatic EBVinfections reveals a superior diagnostic performance of EBV miRNAs over anti-EBNA1 IgA serology and EBV-DNA load (AUC 0.87-0.96 vs 0.86 and 0.66 respectively). The high specificity of circulating EBV-BART13-3p (97%) for NPC detection is in agreement with active secretion from NPC tumor cells. We conclude EV-bound BART13-3p in circulation is a promising, NPCselective, biomarker that should be considered as part of a screening strategy to identify NPC in endemic regions.
FEBS Open Bio, 2014
Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in Southeast Asia among the Chinese population. Aberrant regulation of transcripts has been implicated in many types of cancers including NPC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing (RNASeq) of NPC model systems. Matched total mRNA and small RNA of undifferentiated Epstein-Barr virus (EBV)-positive NPC xenograft X666 and its derived cell line C666, well-differentiated NPC cell line HK1, and the immortalized nasopharyngeal epithelial cell line NP460 were sequenced by Solexa technology. We found 2812 genes and 149 miRNAs (human and EBV) to be differentially expressed in NP460, HK1, C666 and X666 with RNASeq; 533 miRNA-mRNA target pairs were inversely regulated in the three NPC cell lines compared to NP460. Integrated mRNA / miRNA expression profiling and pathway analysis show extracellular matrix organization, Beta-1 integrin cell surface interactions, and the PI3K / AKT, EGFR, ErbB, and Wnt pathways were potentially deregulated in NPC. Real-time quantitative PCR was performed on selected mRNA / miRNAs in order to validate their expression. Transcript sequence variants such as short insertions and deletions (INDEL), single nucleotide variant (SNV), and isomiRs were characterized in the NPC model systems. A novel TP53 transcript variant was identified in NP460, HK1, and C666. Detection of three previously reported novel EBV-encoded BART miRNAs and their isomiRs were also observed. Meta-analysis of a model system to a clinical system aids the choice of different cell lines in NPC studies. This comprehensive characterization of mRNA and miRNA transcriptomes in NPC cell lines and the xenograft provides insights on miRNA regulation of mRNA and valuable resources on transcript variation and regulation in NPC, which are potentially useful for mechanistic and preclinical studies.
EBV-encoded miRNAs target ATM-mediated response in nasopharyngeal carcinoma
Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein–Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p, and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p, and BART14-3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work cooperatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC.
2023
Background: Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated cancer that is highly treatable when diagnosed early, with 5-year disease-free survival of approximately 90%. However, NPC is typically diagnosed at advanced stages, in which disease-free survival is <50%. There is, therefore, a need for clinical tools to assist in early NPC detection, particularly among high-risk individuals. Methods: We evaluated the ability of anti-EBV IgA antibodies to detect incident NPC among high-risk Taiwanese individuals. NPC cases (N ¼ 21) and age-and sex-matched controls (N ¼ 84) were selected. Serum collected before NPC diagnosis was tested for ELISA-based IgA antibodies against the following EBV peptides: EBNA1, VCAp18, EAp138, Ead_p47, and VCAp18 þ EBNA1 peptide mixture. The sensitivity, specificity, and screening program parameters were calculated. Results: EBNA1 IgA had the best performance characteristics. At an optimized threshold value, EBNA1 IgA measured at baseline identified 80% of the high-risk individuals who developed NPC during follow-up (80% sensitivity). However, approximately 40% of high-risk individuals who did not develop NPC also tested positive (false positives). Application of EBNA1 IgA as a biomarker to detect incident NPC in a previously unscreened, high-risk population revealed that 164 individuals needed to be screened to detect 1 NPC and that 69 individuals tested positive per case detected. Conclusions: EBNA1 IgA proved to be a sensitive biomarker for identifying incident NPC, but future work is warranted to develop more specific screening tools to decrease the number of false positives. Impact: Results from this study could inform decisions about screening biomarkers and referral thresholds for future NPC early-detection program evaluations. Cancer Epidemiol Biomarkers Prev; 23(7); 1213-9. Ó2014 AACR.