Past, Present and Future of Membrane Technology in Spain (original) (raw)

Abstract

The following review aims at analyzing the contribution of Spanish researchers to membrane science and technology, with a historical compilation of the main milestones. We used a bibliometric analysis based on the Scopus database (1960–2020) dealing with 8707 documents covering the different disciplines and subject areas where membranes are involved. Furthermore, the information has been updated to the present moment of writing this manuscript in order to include the latest research lines and the different research groups currently active in Spain, which may lead the way to the development of the field in the coming years.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (84)

  1. Hernández, A. Universidad de Valladolid (UVA) 115 37 4685 5 Benavente, J. Universidad de Málaga (UMA) 92 28 2341 6 Prádanos, P.
  2. Serra, J.M. Universidad Politécnica de Valencia, UPV-Consejo Superior de Investigaciones Científicas, CSIC (Instituto de Tecnología Química, ITQ)
  3. Gelman, C. Microporous membrane technology. I. Historical development and applications. Anal. Chem. 1965, 37, 29-37.
  4. Nollet, A. Leçons de Physique Experimentale. Gueriny, H.L., Delatour, L.F., Eds.; Guérin: París, France, 1748.
  5. Fick, A. Uber difussion. Ann. Phys. Chem. 1855, 94, 59-86.
  6. Traube, M. Physiologie und wisserchlaftliche medizin. In Archiv für Anatomie; Reischert, C.B., Bois-Reymond, D., Eds.; Verlag: Leipzig, Germany, 1867.
  7. Pfeffer, W. Osmotic Untersuchungen; Wilhelm Engelmann: Leipzig, Germany, 1877.
  8. Hoff, J.H.V. Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen. Z. Für Phys. Chem. 1887, 1U, 481-508. [CrossRef]
  9. Van t Hoff, J.H. The function of osmotic pressure in the analogy between solutions and gases. Lond. Edinb. Dublin Phil. Mag. 1888, 26, 81-105. [CrossRef]
  10. Zsigmondy, R. Filter for Ultramicroscopic Particles. U.S. Patent 1,421,341, 27 June 1922.
  11. Peinador, R.; Kaabouch, M.; Ben Aim, R.; Calvo, J. Non-Destructive Characterization of Industrial Membrane Cartridges by Using Liquid-Liquid Displacement Porosimetry (LLDP). Membranes 2020, 10, 369. [CrossRef]
  12. Mason, E. From pig bladders and cracked jars to polysulfones: An historical perspective on membrane transport. J. Membr. Sci. 1991, 60, 125-145.
  13. Lonsdale, H. The growth of membrane technology. J. Membr. Sci. 1982, 10, 81-181. [CrossRef]
  14. Loeb, S.; Sourirajan, S. Sea Water Demineralization by Means of a Semipermeable Membrane. UCLA Dept. Eng. 1960.
  15. Baker, R.W. Membrane Technology and Applications; John Wiley & Sons, Ltd.: London, UK, 2004; ISBN 0470854456.
  16. Lente, H.v.; Rip, A. The Rise of Membrane Technology: From Rhetorics to Social Reality. Soc. Stud. Sci. 1998, 28, 221-254.
  17. Mulder, M. Basic Principles of Membrane Technology, 2nd ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996.
  18. Fernandez-Polanco, F. Aplicaciones industriales de la ósmosis inversa. Ing. Química 1973, 56, 85-90.
  19. Galtes-Ros, J.M. Osmosis inversa. Ing. Química 1981, 147, 151-155.
  20. Reimers, G. Ultrafiltración y ósmosis inversa aplicada a la industria quesera: Un caso de aplicación práctica. Rev. Mens. De Las Ind. Lácteas Españolas 1982, 44, 73-76.
  21. Alvarez, R.; Coca, J.; Rodríguez, M.B. La tecnología de membranas en la industria papelera. Ing. Química 1990, 253, 137-143.
  22. Urtiaga, A.; Ortiz, M.I.; Irabien, A. Phenol Recovery with Supported Liquid Membranes: Experimental Study. Chem. Prot. Environ. 1991, 119, 647-651. [CrossRef]
  23. Fernández-Pineda, C.; Mengual, J. Permeation of water at low pressure in cellulose acetate membranes. I. Experimental results and their variation with temperature. J. Colloid Interface Sci. 1977, 61, 95-101.
  24. Fernández-Pineda, C.; Mengual, J. Permeation of water at low pressure in cellulose acetate membranes. II. Nature of flow. J. Colloid Interface Sci. 1977, 61, 102-108.
  25. Mengual, J.; Aguilar, J.; Fernandez-Pineda, C. Thermoosmosis of water through cellulose acetate membranes. J. Membr. Sci. 1978, 4, 209-219.
  26. Mengual, J.; Fernández-Pineda, C. Frictional coefficients and activation energies for permeation through cellulose acetate membranes. Eur. Polym. J. 1979, 15, 197-202.
  27. Guzman, J. Las Palmas phase II desalination plant in the Canary Islands (Spain). Desalination 1978, 27, 175-187. [CrossRef]
  28. Muro, S.; Sterner, R.; Ugarte, J. Investigation on sea water desalination plants in Spain. Desalination 1979, 28, 109-116.
  29. Riande, E.; Mateos, A.M.; Guzmán, G.M. Ion-exchange membranes prepared by grafting glycidyl acrylate on paper. Eur. Polym. J. 1970, 6, 437-442. [CrossRef]
  30. Riande, E.; Mateos, A.M.; Guzmán, G.M. Ion-exchange membranes prepared by grafting glycidyl acrylate on paper-II. Electropos- itive membranes. Eur. Polym. J. 1970, 6, 1247-1252. [CrossRef]
  31. Guzman, J. Rehabilitation of an uneconomic MSF plant in the Canary Islands, Spain. Desalination 1984, 52, 75-85.
  32. Ibáñez, J.A.; Tejerina, A.F.; Garrido, J.; Pellicer, J. Diffusion Salt Flow Through Membranes and Permeability Determination from Cell Potential Measurements. J. Non-Equilib. Thermodyn. 1980, 5, 213-220.
  33. Ibáñtez-Mengual, J.A.; Tejerina-García, A.F. Quantum model for transport through membranes. Int. J. Quantum Chem. 1980, 17, 1191-1200.
  34. Fernández-Pineda, C.; Serrano, F. A study of membrane hydraulic permeability obtained by different procedures. J. Membr. Sci. 1984, 19, 325-332.
  35. Fernández-Pineda, C.; Serrano, F. Hydraulic and osmotic permeabilities of water and water/sucrose solutions through cellophane membranes. J. Membr. Sci. 1984, 19, 309-323. [CrossRef]
  36. Benavente, J. A Study of Membrane Potentials Across a Cellophane Membrane for Different Electrolytes. J. Non-Equilib. Thermodyn. 1984, 9, 245-254.
  37. Benavente, J.; Fernandez-Pineda, C. Electrokinetic phenomena in porous membranes: Determination of phenomenological coefficients and transport numbers. J. Membr. Sci. 1985, 23, 121-136.
  38. Martínez, L.; Hernández, A.; Tejerina, F. Diffusion coefficients of Polycarbonate microporous membranes. Il Nuovo Cim. 1987, 9, 174. [CrossRef]
  39. Martinez, L.; Gigosos, M.; Hernandez, A.; Tejerina, F. Study of some electrokinetic phenomena in charged microcapillary porous membranes. J. Membr. Sci. 1987, 35, 1-20. [CrossRef]
  40. Garrido, J.; Mafé, S.; Aguilella, V. Transport processes through membranes with gaseous electrodes. Electrochim. Acta 1989, 34, 1385-1386.
  41. Diaz, C.; Vidal, J.C.; Galban, J.; Urarte, M.; Lanaja, J. A double-membrane ion-selective electrode for the potentiometric determination of potassium. Microchem. J. 1989, 39, 289-297. [CrossRef]
  42. Alegret, S.; Florido, A.; Lima, J.; Machado, A. Flow-through tubular iodide and bromide selective electrodes based on epoxy resin heterogeneous membranes. Talanta 1989, 36, 825-829. [CrossRef]
  43. Torres, M.; Vera, J. Reverse osmosis seawater desalting plants built by the Ministerio de Obras Publicas Y Urbanismo (Spain). Desalination 1987, 64, 443-458. [CrossRef]
  44. Lora, J.; Soriano, E. Composite membranes of aromatic-polyamide for desalination: Membrane preparation and characterization. Desalination 1987, 64, 375-386. [CrossRef]
  45. Uribe, I.O.; Wongswan, S.; de Ortiz, E.S.P. A systematic method for the study of the rate-controlling mechanisms in liquid membrane permeation processes. Extraction of zinc by bis(2-ethylhexyl)phosphoric acid. Ind. Eng. Chem. Res. 1988, 27, 1696-1701.
  46. Balbuena, M.B.; García, P.G.; Fernández, A.G. Regeneration of Spanish Style Green Table Olive Brines by Ultrafiltration. J. Food Sci. 1988, 53, 1733-1736. [CrossRef]
  47. Alonso, J.; Garay, E.; Hernandez, E. Membrane filter procedure for enumeration of Pseudomonas aeruginosa in water. Water Res. 1989, 23, 1499-1502. [CrossRef]
  48. Hidalgo-Álvarez, R.; Caballero, F.G.; Bruque, J.; Pardo, G. Irreversible thermodynamics of transport processes through porous media composed of particles of different size. J. Colloid Interface Sci. 1981, 82, 45-52. [CrossRef]
  49. Caballero, F.G.; Nieves, F.D.L. On the relation between the electrokinetic behavior of heterogeneous ion-exchange membranes and their structural characteristics. J. Membr. Sci. 1983, 16, 225-235.
  50. Horno, J.; González-Fernández, C.; Hayas, A.; Caballero, F.G. Application of network thermodynamics to the computer modelling of nonstationary diffusion through heterogeneous membranes. J. Membr. Sci. 1989, 42, 1-12.
  51. Saavedra, E. Graphic evolution of the 24.000 hours (3 years) operating data of a RO brackish water desalination plant, in Las Palmas, Canary Islands, Spain. Desalination 1989, 76, 15-26.
  52. Lora, J.; Arnal, J.M. The effect of agitation on reverse osmosis desalination. Desalination 1990, 79, 720-724. [CrossRef]
  53. Torres, M.R.; Soriano, E.; Abajo, J.d.; Campa, J.G.d. Comparative study of the behaviour of experimental polyamide UF membranes. The effect of polyvinylpyrrolidone used as an additive. J. Membr. Sci. 1993, 81, 31-42.
  54. Prádanos, P.; Abajo, J.d.; Campa, J.G.d.l.; Hernández, A. A comparative analysis of flux limit models for ultrafiltration membranes. J. Membr. Sci. 1995, 108, 129-142.
  55. Suárez, E.; San Martín, F.; Alvarez, R.; Coca, J. Reverse osmosis of whey. Determination of mass transfer coefficients. J. Membr. Sci. 1992, 68, 301-305.
  56. Mehaia, M.A.; Alvarez, J.; Cheryan, M. Hydrolysis of whey permeate lactose in a continuous stirred tank membrane reactor. Int. Dairy J. 1993, 3, 179-192.
  57. Pérez, A.; Andrés, L.J.; Álvarez, R.; Coca, J.; Hill, C.G., Jr. Electrodialysis of whey permeates and retentates obtained by Ultrafiltration. J. Food Process. Eng. 1994, 17, 177-190.
  58. Coronas, J.; Menendez, M.; Santamaria, J. Development of ceramic membrane reactors with a non-uniform permeation pattern. Application to methane oxidative coupling. Chem. Eng. Sci. 1994, 49, 4749-4757.
  59. Piera, E.; Giroir-Fendler, A.; Alain Dalmon, J.; Moueddeb, H.; Coronas, J.; Menéndez, M.; Santamaría, J. Separation of alcohols and alcohols/O2 mixtures using zeolite MFI membranes. J. Membr. Sci. 1998, 142, 97-109.
  60. Bricall, J.M. Informe Universidad 2000, Barcelona, CRUE. 2000. Available online: http://www.oei.es/oeivirt/bricall.htm (accessed on 1 August 2021).
  61. Scopus Scopus (Article Title, Abstract, Keywords). Available online: https://www.scopus.com/search/form.uri?display=basic (accessed on 16 October 2020).
  62. Fontàs, C.; Tayeb, R.; Dhahbi, M.; Gaudichet, E.; Thominette, F.; Roy, P.; Steenkeste, K.; Fontaine-Aupart, M.-P.; Tingry, S.; Tronel-Peyroz, E. Polymer inclusion membranes: The concept of fixed sites membrane revised. J. Membr. Sci. 2007, 290, 62-72.
  63. Garcia-Rodríguez, A.; Matamoros, V.; Kolev, S.; Fontàs, C. Development of a polymer inclusion membrane (PIM) for the preconcentration of antibiotics in environmental water samples. J. Membr. Sci. 2015, 492, 32-39.
  64. Pavón, S.; Fortuny, A.; Coll, M.; Bertau, M.; Sastre, A. Permeability dependencies on the carrier concentration and membrane viscosity for Y(III) and Eu(III) transport by using liquid membranes. Sep. Purif. Technol. 2020, 239, 116573.
  65. Rotta, E.H.; Marder, L.; Perez-Herranz, V.; Bernardes, A.M. Characterization of an anion-exchange membrane subjected to phosphate and sulfate separation by electrodialysis at overlimiting current density condition. J. Membr. Sci. 2021, 635, 119510.
  66. Cifuentes-Cabezas, M.; Carbonell-Alcaina, C.; Vincent-Vela, M.C.; Mendoza-Roca, J.A.; Alvarez-Blanco, S. Comparison of different ultrafiltration membranes as first step for the recovery of phenolic compounds from olive-oil washing wastewater. Process. Saf. Environ. Prot. 2021, 149, 724-734.
  67. Alguacil, F.J.; Lopez, F.A. Dispersion-free extraction of In(III) from HCl solutions using a supported liquid membrane containing the HA324H+Cl-ionic liquid as the carrier. Sci. Rep. 2020, 10, 13868. [CrossRef]
  68. Qiu, Y.; Lv, Y.; Tang, C.; Liao, J.; Ruan, H.; Sotto, A. Sustainable recovery of high-saline papermaking wastewater: Optimized separation for salts and organics via membrane-hybrid process. Shen. J. Desalination 2021, 507, 114938.
  69. Diez, B.; Sotto, A.; Martin, A.; Arsuaga, J.; Rosal, R. Poly(vinyl chloride)-hyperbranched polyamidoamine ultrafiltration membranes with antifouling and antibiofouling properties. React. Funct. Polym. 2020, 154, 104669. [CrossRef]
  70. Basauri, A.; González-Fernández, C.; Fallana, M.; Bringas, E.; Fernández-López, R.; Giner, L.; Moncalián, G.; Cruz, F.d.l.; Ortiz, I. Biochemical interactions between LPS and LPS-binding molecules. Crit. Rev. Biotechnol. 2020, 40, 292-305.
  71. Yañez, M.; Ortiz, A.; Gorri, D.; Ortiz, I. Comparative performance of commercial polymeric membranes in the recovery of industrial hydrogen waste gas streams. Int. J. Hydrog. Energy 2021, 46, 17507-17521.
  72. Corredor, J.; Perez-Peña, E.; Rivero, M.J. Ortiz performance of rgo-tio2 photocatalytiuc membranes for H2 separation. Membranes 2020, 10, 218. [CrossRef]
  73. Pardo, F.; Gutierrez-Hernandez, S.V.; Zarca, G.; Urtiaga, A. Toward the Recycling of Low-GWP Hydrofluorocarbon/Hydrofluoroolefin Refrigerant Mixtures Using Composite Ionic Liquid-Polymer Membranes. ACS Sustain. Chem. Eng. 2021, 9, 7012-7021.
  74. Arguillarena, A.; Margallo, M.; ARrruti-Fernandez, A.; Pinedo, J.; Gomez, P.; Urtiaga, A. Scale-up of membrane-based zinc recovery from spent pickling acids of hot-dip galnizing. Membranes 2020, 10, 444. [PubMed]
  75. Abejón, R.; Fernández-Ríos, A.; Domínguez-Ramos, A.; Laso, J.; Ruiz-Salmón, I.; Yáñez, M.; Ortiz, A.; Gorri, D.; Donzel, N.; Jones, D.; et al. Hydrogen Recovery from Waste Gas Streams to Feed (High-Temperature PEM) Fuel Cells: Environmental Performance under a Life-Cycle Thinking Approach. Appl. Sci. 2020, 10, 7461. [CrossRef]
  76. Vadillo, J.M.; Hospital-Benito, D.; Moya, C.; Gomez-Coma, L.; Palomar, J.; Garea, A.; Irabien, A. Modelling and simulation of hollow fiber membrane vacuum regeneration for CO2 desorption processes using ionic liquids. Sep. Purif. Technol. 2021, 277, 119465. [CrossRef]
  77. García-Cruz, L.; Casado-Coterillo, C.; Iniesta, J.; Montiel, V.; Irabien, Á. hitosan:poly (vinyl) alcohol composite alkaline membrane incorporating organic ionomers and layered silicate materials into a PEM electrochemical reactor. J. Membr. Sci. 2016, 498, 395-407.
  78. Fernandez-Gonzalez, C.; Zhang, B.; Dominguez-Ramos, A.; Ibanez, R.; Irabien, A.; Chen, Y. Enhancing fouling resistance of polyethylene anion exchange membranes using carbon nanotubes and iron oxide nanoparticles. Desalination 2017, 411, 19-27.
  79. Julian, I.; Herguido, J.; Menendez, M. Gas permeation effect on the Two-Section Two-Zone Fluidized Bed Membrane Reactor (TS-TZFBMR) fluid dynamics: A CFD simulation study. Chem. Eng. J. 2016, 305, 201-211. [CrossRef]
  80. Esteras-Saz, J.; de la Iglesia, O.; Pena, C.; Escudero, A.; Tellez, C.; Coronas, J. Theoretical and practical approach to the dealcoholization of water-ethanol mixtures and red wine by osmotic distillation. Sep. Purif. Technol. 2021, 270, 118793.
  81. Martinez-Izquierdo, L.; Malankowska, M.; Tellez, C.; Coronas, J. Phase inversion method for the preparation of Pebax®3533 thin film membranes for CO 2 /N 2 separation. J. Environ. Chem. Eng. 2021, 9, 105624.
  82. Tanis-Kanbur, M.B.; Peinador, R.I.; Calvo, J.I.; Hernandez, A.; Chew, J.W. Porosimetric membrane characterization techniques: A review. J. Membr. Sci. 2021, 619, 118750.
  83. Hernandez-Suarez, A.; Rizo-Gorrita, M.; Suarez-Vega, D.; Velazco, G.; Gelfenstein, I.R.; Vazquez-Pachon, C.; Serrera-Figallo, M.-A.; Torres-Lagares, D. Effectiveness of silicon platelet-rich fibrin and autologous bone on bone regeneration in rabbit calvarian defects: A radiological and histological study. Appl. Sci. 2021, 11, 4074.
  84. Toledano, M.; Gutierrez-Perez, J.L.; Gutierrez-Corrales, A.; Serrera-Figallo, M.A.; Toledano-Osorio, M.; Rosales-Leal, J.I.; Aguilar, M.; Osorio, R.; Torres-Lagares, D. Novel non-resorbable polymeric-nanostructured scaffolds for guided bone regeneration. Clin. Oral Investig. 2020, 24, 2037-2049. [PubMed]