Heterogeneous ice nucleation: exploring the transition from stochastic to singular freezing behavior (original) (raw)

Heterogeneous ice nucleation: bridging stochastic and singular freezing behavior

Atmospheric Chemistry and Physics Discussions, 2011

Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized model that bridges these stochastic and singular descriptions of heterogeneous ice nucleation. This "soccer ball" model treats statistically similar particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. We suggest that ice nucleation is fundamentally a stochastic process but that for realistic atmospheric particle populations this process can be masked by the heterogeneity of surface properties. Full evaluation of the model will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.

Time-dependence of Heterogeneous Ice Nucleation by Ambient Aerosols: Laboratory Observations and a Formulation for Models

2021

The time dependence of ice-nucleating particle (INP) activity is known to exist, yet for simplicity it is often omitted in atmospheric models as an approximation. Hitherto, only limited experimental work has been done to quantify this time dependency, for which published data are especially scarce regarding ambient aerosol samples and longer timescales. In this study, the time dependence of INP activity is quantified experimentally for six ambient environmental samples. The experimental approach includes a series of hybrid experiments with alternating constant cooling and isothermal experiments using a recently developed cold-stage setup called the Lund University Cold-Stage (LUCS). This approach of observing ambient aerosol samples provides the optimum realism for representing their time dependence in any model. Six ambient aerosol samples were collected at a station in rural Sweden representing aerosol conditions likely influenced by various types of INPs: marine, mineral dust, continental pristine, continental-polluted, combustion-related and rural continental aerosol. Active INP concentrations were seen to be augmented by about 40 % to 100 % (or 70 % to 200 %), depending on the sample, over 2 h (or 10 h). Mineral dust and rural continental samples displayed the most time dependence. This degree of time dependence observed was comparable to, but weaker than, that seen in previous published works. A general tendency was observed for the natural timescale of the freezing to dilate increasingly with time. The fractional freezing rate was observed to decline steadily with the time since the start of isothermal conditions following a power law. A representation of time dependence for incorporation into schemes of heterogeneous ice nucleation that currently omit it is proposed. Our measurements are inconsistent with the simplest purely stochastic model of INP activity, which assumes that the fractional freezing rate of all unfrozen drops is somehow constant and would eventually overpredict active INPs. In reality, the variability of efficiencies among INPs must be treated with any stochastic theory.

Khvorostyanov, V. I., and J. A. Curry, 2005. The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part 2: Parcel model simulation. J. Atmos. Sci., 62, No 2, 261-285 (February 2005).

Journal of The Atmospheric Sciences, 2005

The new theory of ice nucleation by heterogeneous freezing of deliquescent mixed cloud condensation nuclei (CCN) presented in Part I is incorporated into a parcel model with explicit water and ice bin microphysics to simulate the process of ice nucleation under transient thermodynamic conditions. Simulations are conducted over the temperature range Ϫ4°to Ϫ60°C, with vertical velocities varying from 1 to 100 cm s Ϫ1 , for varying initial relative humidities and aerosol characteristics. These simulations show that the same CCN that are responsible for the drop nucleation may initiate crystal nucleation and can be identified as ice nuclei (IN) when crystals form. The simulated nucleation rates and concentrations of nucleated crystals depend on temperature and supersaturation simultaneously, showing good agreement with observations but with noticeable differences when compared with classical temperature-only and supersaturation-only parameterizations. The kinetics of heterogeneous ice nucleation exhibits a negative feedback via water supersaturation, whereby ice nucleation depends on the water supersaturation that is diminished by ice crystal diffusional growth. This feedback is stronger than the corresponding feedback for drop nucleation, and may explain discrepancies between observed ice nuclei concentrations and ice crystal concentrations, the very small fraction of CCN that may serve as IN, and the much smaller crystal concentrations as compared to drop concentrations. The relative importance of heterogeneous versus homogeneous nucleation is examined for a variety of cloud conditions. Based on these calculations, a simple parameterization for ice crystal concentration is suggested for use in cloud models and large-scale models.

Representing time-dependent freezing behaviour in immersion mode ice nucleation

Atmospheric Chemistry and Physics Discussions, 2014

In order to understand the impact of ice formation in clouds, a quantitative understanding of ice nucleation is required, along with an accurate and efficient representation for use in cloud resolving models. Ice nucleation by atmospherically relevant particle types is complicated by interparticle variability in nucleating ability, as well as a stochastic, timedependent, nature inherent to nucleation. Here we present a new and computationally efficient Framework for Reconciling Observable Stochastic Time-dependence (FROST) in immersion mode ice nucleation. This framework is underpinned by the finding that the temperature dependence of the nucleation-rate coefficient controls the residence-time and cooling-rate dependence of freezing. It is shown that this framework can be used to reconcile experimental data obtained on different timescales with different experimental systems, and it also provides a simple way of representing the complexities of ice nucleation in cloud resolving models. The routine testing and reporting of time-dependent behaviour in future experimental studies is recommended, along with the practice of presenting normalised data sets following the methods outlined here.

Repeatability and randomness in heterogeneous freezing nucleation

This study is aimed at clarifying the relative importance of the specific character of the nuclei and of the duration of supercooling in heterogeneous freezing nucleation by immersed impurities. Laboratory experiments were carried out in which sets of water drops underwent multiple cycles of freezing and melting. The drops contained suspended particles of mixtures of materials; the resulting freezing temperatures ranged from −6 • C to −24 • C. Rank correlation coefficients between observed freezing temperatures of the drops in successive runs were >0.9 with very high statistical significance, and thus provide strong support for the modified singular model of heterogeneous immersion freezing nucleation. For given drops, changes in freezing temperatures between cycles were relatively small (<1 • C) for the majority of the events. These frequent small fluctuations in freezing temperatures are interpreted as reflections of the random nature of embryo growth and are associated with a nucleation rate that is a function of a temperature difference from the characteristic temperatures of nuclei. About a sixth of the changes were larger, up to ±5 • C, and exhibited some systematic patterns. These are thought to arise from alterations of the nuclei, some being permanent and some transitory. The results are used to suggest ways of describing ice initiation in cloud models that account for both the temperature and the time dependence of freezing nucleation.

A new theory of heterogeneous ice nucleation for application in cloud and climate models

Geophysical Research Letters, 2000

A new formulation is presented of the thermodynamical theory of heterogeneous ice crystal nucleation in clouds by freezing. This theory unifies and explains the empirical ice nuclei dependence on temperature and supersaturation, predicts crystal formation via condensation-freezing at a subsaturation over water. The theory also explains observations of high nucleation rates and crystal concentrations at warm(-5 >-12 øC)temperatures when the splintering mechanism may be not effective. This theory can be applied to parameterizations for use in cloud and climate models.

Interpretation of freezing nucleation experiments: singular and stochastic; sites and surfaces.

Publications of recent years dealing with laboratory experiments of immersion freezing reveal uncertainties about the fundamentals of heterogeneous freezing nucleation. While it appears well accepted that there are two major factors that determine the process, namely fluctuations in the size and configuration of incipient embryos of the solid phase and the role of the substrate to aid embryo formation, views have been evolving about the relative importance of these two elements. The importance of specific surface sites is being established in a growing number of experiments and a number of approaches have been proposed to incorporate these results into model descriptions. Many of these models share a common conceptual basis yet diverge in the way random and deterministic factors are combined. The divergence can be traced to uncertainty about the permanence of nucleating sites, to the lack of detailed knowledge about what surface features constitute nucleating sites, and to the consequent need to rely on empirical or parametric formulas to define the population of sites of different effectiveness. Recent experiments and models, consistent with earlier work, demonstrate the existence and primary role of permanent nucleating sites and the continued need for empirically based formulations of heterogeneous freezing. In order to clarify some aspects of the processes controlling immersion freezing, the paper focuses on three identifiably separate but interrelated issues: (i) the combination of singular and stochastic factors, (ii) the role of specific surface sites, and (iii) the modeling of heterogeneous ice nucleation.

The Theory of Ice Nucleation by Heterogeneous Freezing of Deliquescent Mixed CCN. Part II: Parcel Model Simulation

Journal of the Atmospheric Sciences, 2005

The new theory of ice nucleation by heterogeneous freezing of deliquescent mixed cloud condensation nuclei (CCN) presented in Part I is incorporated into a parcel model with explicit water and ice bin microphysics to simulate the process of ice nucleation under transient thermodynamic conditions. Simulations are conducted over the temperature range −4° to −60°C, with vertical velocities varying from 1 to 100 cm s−1, for varying initial relative humidities and aerosol characteristics. These simulations show that the same CCN that are responsible for the drop nucleation may initiate crystal nucleation and can be identified as ice nuclei (IN) when crystals form. The simulated nucleation rates and concentrations of nucleated crystals depend on temperature and supersaturation simultaneously, showing good agreement with observations but with noticeable differences when compared with classical temperature-only and supersaturation-only parameterizations. The kinetics of heterogeneous ice nu...

A Review of Ice Particle Formation Models

Modelling of ice clouds in the atmosphere is in general a more complex task than modelling their liquid water counterparts, owing to the plethora of ice crystal nucleation processes and their non-linear dependence on surrounding conditions. Accurate modelling of ice clouds plays an important role in weather prediction and climatology, particularly in their contribution to greenhouse effect, global warming and precipitation processes, and the impact of aviation on the environment. In this paper, we review different ice particle formation models, focusing on the underlying assumptions, advantages and limitations of each scheme.