Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, … (original) (raw)
Related papers
Identification of an EDG7 Variant, HOFNH30, a G-Protein-Coupled Receptor for Lysophosphatidic Acid
Biochemical and Biophysical Research Communications, 2000
We have identified a cDNA, designated HOFNH30, which encodes a 354 amino acid G-protein-coupled receptor (GPCR). This receptor has 96% amino acid identity to the Jurkat-T cell-derived EDG7 and could be a splice variant. RT-PCR analysis demonstrated that HOFNH30 mRNA is expressed in placenta whereas EDG7 mRNA shows highest expression in prostate. The HOFNH30 gene is localized to human chromosome 1p22.3-1p31.1. When HOFNH30 was expressed in RBL-2H3 cells, LPA and phosphatidic acid (PA) induced a calcium mobilization response with EC 50 values of 13 nM and 3 M, respectively. LPA also induced phosphorylation of mitogen-activated protein kinase (p42 MAPK and p44 MAPK ) in HOFNH30-transfected but not vector-transfected RBL-2H3 cells. In the present study, we have identified a novel variant from the EDG receptor family, a GPCR for which LPA is a highaffinity endogenous ligand.
Lysophosphatidic acid: G-protein signalling and cellular responses
Current Opinion in Cell Biology, 1997
Lysophosphatidic acid (LPA) is a serum-borne phospholipid that activates a specific G protein coupled receptor to evoke multiple cellular responses. Recent work has identified two cDNAs encoding putative LPA receptors, various LPA-like agonists that act on distinct receptors, and new pathways that link the receptor(s) to such diverse events as Ras signalling, cytoskeletal remodelling and membrane depolarization.
Phosphorylation and desensitization of the lysophosphatidic acid receptor LPA1
Biochemical Journal, 2005
In C9 cells, LPA (lysophosphatidic acid) induced inositol phosphate production, increased intracellular calcium concentration and inhibited adenylate cyclase activity. These responses were abolished in cells challenged with active phorbol esters. Action of phorbol esters was blocked by inhibitors of PKC (protein kinase C) and by its down-regulation. LPA1 receptor phosphorylation was observed in response to phorbol esters. The effect was rapid (t1/2∼1 min), intense (2-fold) and sustained (at least 60 min). PKC inhibitors markedly decreased the LPA1 receptor phosphorylation induced by phorbol esters. LPA1 receptor tagged with the green fluorescent protein internalized in response to PKC activation. In addition, LPA and angiotensin II were also capable of inducing LPA1 receptor phosphorylation, showing that LPA1 receptor can be subjected to homologous and heterologous desensitization.
Molecular pharmacology, 1998
Lysophosphatidic acid (LPA), plasmalogen-glycerophosphate (alkenyl-GP) and, cyclic-phosphatidic acid (cyclic-PA) are naturally occurring phospholipid growth factors (PLGFs). PLGFs elicit diverse biological effects via the activation of G protein-coupled receptors in a variety of cell types. In NIH3T3 fibroblasts, LPA and alkenyl-GP both induced proliferation, whereas cyclic-PA was antiproliferative. LPA and alkenyl-GP decreased cAMP in a pertussis toxin-sensitive manner, whereas cyclic-PA caused cAMP to increase. LPA and alkenyl-GP both stimulated the activity of the mitogen-actived protein kinases extracellular signal regulated kinases 1 and 2 and c-Jun NH2-terminal kinase, whereas cyclic-PA did not. All three PLGFs induced the formation of stress fibers in NIH3T3 fibroblasts. To determine whether these lipids activated the same or different receptors, heterologous desensitization patterns were established among the three PLGFs by monitoring changes in intracellular Ca2+ in NIH3T3 ...
Lipid phosphate phosphatase-1 and Ca2+ control lysophosphatidate signaling through EDG-2 receptors
The Journal of biological chemistry, 2000
The serum-derived phospholipid growth factor, lysophosphatidate (LPA), activates cells through the EDG family of G protein-coupled receptors. The present study investigated mechanisms by which dephosphorylation of exogenous LPA by lipid phosphate phosphatase-1 (LPP-1) controls cell signaling. Overexpressing LPP-1 decreased the net specific cell association of LPA with Rat2 fibroblasts by approximately 50% at 37 degrees C when less than 10% of LPA was dephosphorylated. This attenuated cell activation as indicated by diminished responses, including cAMP, Ca(2+), activation of phospholipase D and ERK, DNA synthesis, and cell division. Conversely, decreasing LPP-1 expression increased net LPA association, ERK stimulation, and DNA synthesis. Whereas changing LPP-1 expression did not alter the apparent K(d) and B(max) for LPA binding at 4 degrees C, increasing Ca(2+) from 0 to 50 micrometer increased the K(d) from 40 to 900 nm. Decreasing extracellular Ca(2+) from 1.8 mm to 10 micrometer ...
Role of lysophosphatidic acid in ion channel function and disease
Journal of Neurophysiology, 2018
Lysophosphatidic acid (LPA) is a bioactive phospholipid that exhibits a wide array of functions that include regulation of protein synthesis and adequate development of organisms. LPA is present in the membranes of cells and in the serum of several mammals and has also been shown to participate importantly in pathophysiological conditions. For several decades it was known that LPA produces some of its effects in cells through its interaction with specific G protein-coupled receptors, which in turn are responsible for signaling pathways that regulate cellular function. Among the target proteins for LPA receptors are ion channels that modulate diverse aspects of the physiology of cells and organs where they are expressed. However, recent studies have begun to unveil direct effects of LPA on ion channels, highlighting this phospholipid as a direct agonist and adding to the knowledge of the field of lipid-protein interactions. Moreover, the roles of LPA in pathophysiological conditions ...
Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3
PLOS ONE, 2015
The lysophosphatidic acid receptors LPA 1 , LPA 2 , and LPA 3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA 1-and LPA 3-mediated effect, whereas that mediated by LPA 2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA 2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA 1-3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA 1-3 phosphorylation, in time-and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA 2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes. Conclusion Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes.
Lysophospholipid (LPA) receptors in GtoPdb v.2021.3
IUPHAR/BPS Guide to Pharmacology CITE, 2021
Lysophosphatidic acid (LPA) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Lysophospholipid Receptors [55, 19, 82, 129]) are activated by the endogenous phospholipid LPA. The first receptor, LPA1, was identified as ventricular zone gene-1 (vzg-1) [40], This discovery represented the beginning of the de-orphanisation of members of the endothelial differentiation gene (edg) family, as other LPA and sphingosine 1-phosphate (S1P) receptors were found. Five additional LPA receptors (LPA2,3,4,5,6) have since been identified [82] and their gene nomenclature codified for human LPAR1, LPAR2, etc. (HUGO Gene Nomenclature Committee, HGNC) and Lpar1, Lpar2, etc. for mice (Mouse Genome Informatics Database, MGI) to reflect species and receptor function of their corresponding proteins. The crystal structure of LPA1 is solved and indicates that LPA accesses the extracellular binding pocket, consistent with its proposed delivery via autotaxin [13]. These studies have also implic...