Effect of Calcination Atmosphere and Temperature on the Hydrogenolysis Activity and Selectivity of Copper-Zinc Catalysts (original) (raw)

A series of CuZn catalysts with a Cu/Zn ratio of 1.6 was prepared by the calcination of a single precursor, CuZn-P consisting of an equimolar mixture of aurichalcite and zincian malachite, in three different calcination atmospheres (air, nitrogen, and hydrogen) at three temperatures (220, 350, and 500 °C). All catalysts were characterized by XRD and N2-physisorption to assess their phase composition, crystallite sizes and textural properties and tested in dimethyl adipate (DMA) hydrogenolysis in a batch reactor at 220 °C and 10 MPa H2. The XRD examination of these catalysts proved that both parameters, calcination temperature and atmosphere, affected the resulting phase composition of the catalysts as well as their crystallite sizes. In an oxidizing atmosphere, CuO and ZnO in intimate contact prevailed whereas in inert or reducing atmosphere both oxides were accompanied by Cu2O and Cu. The crystallite size of Cu2O and Cu was larger than the size of CuO and ZnO thus indicating a less...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact