Pollen-Pistil Interactions and Their Role in Mate Selection1[OPEN] (original) (raw)
Related papers
Species Specificity in Pollen-Pistil Interactions
Annual Review of Genetics, 2004
▪ For pollination to succeed, pollen must carry sperm through a variety of different floral tissues to access the ovules within the pistil. The pistil provides everything the pollen requires for success in this endeavor including distinct guidance cues and essential nutrients that allow the pollen tube to traverse enormous distances along a complex path to the unfertilized ovule. Although the pistil is a great facilitator of pollen function, it can also be viewed as an elaborate barrier that shields ovules from access from inappropriate pollen, such as pollen from other species. Each discrete step taken by pollen tubes en route to the ovules is a potential barrier point to ovule access and waste by inappropriate mates. In this review, we survey the current molecular understanding of how pollination proceeds, and ask to what extent is each step important for mate discrimination. As this field progresses, this synthesis of functional biology and evolutionary studies will provide ins...
American journal of botany, 2015
Although much attention has focused on the diversity of plant mating systems, only a few studies have considered the joint effects of mating system and sexual conflict in plant evolution. In mixed-mating Collinsia heterophylla, a sexual conflict over timing of stigma receptivity is proposed: pollen with a capacity to induce early onset of stigma receptivity secures paternity for early-arriving pollen (at the expense of reduced maternal seed set), whereas late onset of stigma receptivity mitigates the negative effects of early-arriving pollen. Here we investigated whether selection on pollen and pistil traits involved in sexual conflict is affected by the presence of both outcross- and self-pollen (mixed mating) during pollen competition. We conducted two-donor crosses at different floral developmental stages to explore male fitness (siring ability) and female fitness (seed set) in relation to male and female identity, pollen and pistil traits, and type of competitor pollen (outcross...
The Scope for Postmating Sexual Selection in Plants
Trends in Ecology & Evolution, 2021
Sexual selection is known to shape plant traits that affect access to mates during the pollination phase, but it is less well understood to what extent it affects traits relevant to interactions between pollen and pistils after pollination. This is surprising, because both of the two key modes of sexual selection, male-male competition and female choice, could plausibly operate during pollen-pistil interactions where physical male-female contact occurs. Here, we consider how the key processes of sexual selection might affect traits involved in pollen-pistil interactions, including 'Fisherian runaway' and 'good-genes' models. We review aspects of the molecular and cellular biology of pollen-pistil interactions on which sexual selection could act and point to research that is needed to investigate them.
Variance in pollen carryover in animal-pollinated plants: Implications for mate choice
Journal of Theoretical Biology, 1988
We used analytical and simulation models to explore the effect of variance in pollen carryover on the diversity of donors contributing pollen to recipient flowers. The analytical model illustrated that as carryover rate drops, fewer donors can be sampled by any pollen recipient, and that this reduction in diversity is highly non-linear. Simulations of variable pollen carryover were carried out for two kinds of plant pollinator systems: (a) those in which little pollen on average is removed from a vector during a flower visit, and (b) those in which a large fraction of the available pollen is removed. In both cases, realized carryover is reduced as variance in carryover of pollen from one flower to the next increases. However, the reduction is disproportionately large in case (b). Introducing simulation results in the analytical projection of donor diversity suggests that in the extreme, variance in carryover can reduce the diversity of pollen "seen" by a flower by up to 70%. Thus, insofar as female choice is an adaptive process in flowering plants (and male fitness is enhanced by multiple opportunities for mating), natural selection should favor floral characters that stabilize pollen carryover rates.
Perspectives in Plant Ecology, Evolution and Systematics, 2010
Studies of sexual selection in plants historically have focused on pollinator attraction, pollen transfer, gametophytic competition, and post-fertilization discrimination by maternal plants. Pollen performance (the speeds of germination and pollen tube growth) in particular is thought to be strongly subject to intrasexual selection, but the effect of mating system on this process has not been rigorously evaluated. Here we propose four predictions derived from the logic that pollen performance should evolve with mating system as an adaptive response to: (1) the competitive environment among pollen genotypes and (2) variation among female genotypes regularly encountered by a given pollen genotype. First, as previously predicted, due to the higher potential for intense selection among diverse pollen genotypes in outcrossing relative to selfing taxa, pollen should evolve to germinate and/or to grow more rapidly in outcrossers than in selfers. Second, due to stronger selection on pollen performance in outcrossing than in selfing taxa, heritable variation in pollen tube growth rate is more likely to be purged in outcrossers. In selfers, by contrast, genetic variation in pollen tube growth rates may readily accumulate because selfing reduces the number of genetically distinct male gametophytes likely to be deposited on any given stigma, thereby relaxing selection on male gametophytic traits. A summary of published studies presented here provides preliminary support for this prediction. Third, due to the high probability that the pollen of outcrossing individuals will be exposed to multiple pistil genotypes, we predict that the pollen of habitually outcrossing taxa will evolve to perform more consistently across female genotypes than the pollen of selfing taxa. Fourth, we predict that epistatic interactions between pollen and pistil genotypes are more likely to evolve in selfers than in outcrossers. We suggest several empirical approaches that may be used to test these predictions.
Sex and pollen: the role of males in stabilising a plant-seed eater pollinating mutualism
Some plants are exclusively pollinated by an insect whose larvae feed on their seeds. The net outcome of a single visit for the plant depends on the number of ovules fertilised by the visitor, the number of eggs laid, and the number of seeds eaten by each larva. Unlike other known plant-seed eater pollinating mutualisms, the globeflower-globeflower fly mutualism (Trollius euro-paeus-Chiastocheta spp.) is unique in that not only females but also males visit flowers, and both sexes are potential pollinators. I analysed the relative efficiency of Chiastocheta males versus females in transporting pollen and fertilising globeflower ovules. I show that there is no sex-specific morphological adaptation or behaviour to enhance pollen collection and transportation in Chiasto-cheta flies, and that males contribute to pollination. However, because of their smaller body size, males transport significantly less pollen than females. Less seeds are produced after a visit from a male than after a visit from a female. A single female visit contributes to about 12% of total seed production, and a single male visit to only 5.4%. Females tend to spend more time inside the flower than males, and the number of ovules fertilised is significantly correlated with the time insects spent inside the closed corolla. The lower efficiency of ovule fertilisation by a male's single visit is compensated for by the higher rate of flower visitation by males: a flower receives about twice as many visits from males as from females during a time unit. The contribution of males to pollination is of major importance with respect to understanding the evolutionary stability of the globe-flower-globeflower fly mutualism, as males satiate pollen requirement of flowers, masking the antagonistic effect of ovipositing females.
Signaling in pollen–pistil interactions1
Seminars in Cell & Developmental Biology, 1999
A complex set of cell᎐cell interactions is required to achieve fertilization. The pollen grain must be recognized by the pistil, take up water, and grow a pollen tube directionally through the style in order to deliver the sperm to the ovule. In many families of flowering plants, self-fertilization can be prevented by recognition mechanisms that allow self-pollen rejection by the pistil. The self-incompatibility response is under the genetic control of a single multi-allelic locus, the S () Self-incompatibility locus. There are two major classes of self-incompatibility systems. Gametophytic self-incompatibility has been well characterized in the Solanaceae and in the Papaveraceae, while sporophytic self-incompatibility has been well characterized in the Brassicaceae. In this review article, we present recent advances in understanding the signals mediating pollen recognition and pollen tube growth, in both compatible and incompatible interactions.