Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space (original) (raw)

Error estimates for a mixed finite element discretization of some degenerate parabolic equations

Peter Knabner

Numerische Mathematik, 2008

View PDFchevron_right

A posteriori analysis of the finite element discretization of some parabolic equations

Zoubida Mghazli

Mathematics of Computation, 2005

View PDFchevron_right

Convergence of mimetic finite difference discretizations of the diffusion equation

Markus Berndt, Konstantin Lipnikov

Journal of Numerical Mathematics, 2000

View PDFchevron_right

A priori error estimates for a mixed finite element discretization of the Richards’ equation

Peter Knabner

Numerische Mathematik, 2004

View PDFchevron_right

A-Posteriori Error Analysis of a Mixed Method for Linear Parabolic Problem

Luis Ferragut

View PDFchevron_right

Some error estimates for the lumped mass finite element method for a parabolic problem

Panagiotis Chatzipantelidis, R. Lazarov

Mathematics of Computation, 2012

View PDFchevron_right

Notes on Finite Element Discretization for a Model Convection-Diffusion Problem

Constantin Bacuta

arXiv (Cornell University), 2023

View PDFchevron_right

Error estimates for some mixed finite element methods for parabolic type problems

Claes Johnson

RAIRO. Analyse numérique

View PDFchevron_right

A Posteriori Error Analysis for Implicit–Explicit hp-Discontinuous Galerkin Timestepping Methods for Semilinear Parabolic Problems

Mohammad Sabawi

Journal of Scientific Computing, 2020

View PDFchevron_right

An a priori error estimate for a monotone mixed finite-element discretization of a convection–diffusion problem

Stefan Holst

Numerische Mathematik, 2008

View PDFchevron_right

A Posteriori Error Analysis in Finite Element Approximation for Fully Discrete Semilinear Parabolic Problems

Younis A. Sabawi

Finite Element Methods and Their Applications, 2021

View PDFchevron_right

Time discretization of parabolic problems by the discontinuous Galerkin method

Claes Johnson

ESAIM: Mathematical Modelling and Numerical Analysis

View PDFchevron_right

The effect of mesh modification in time on the error control of fully discrete approximations for parabolic equations

Eberhard Bänsch

Applied Numerical Mathematics, 2013

View PDFchevron_right

H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations

Amiya Kumar Pani

IMA Journal of Numerical Analysis, 2002

View PDFchevron_right

The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient

Konstantin Lipnikov

Journal of Computational Physics, 2016

View PDFchevron_right

A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems

Martin Vohralík, Robert Eymard, Danielle Hilhorst

Numerische Mathematik, 2006

View PDFchevron_right

Some Error Estimates for the Finite Volume Element Method for a Parabolic Problem

Panagiotis Chatzipantelidis

Computational Methods in Applied Mathematics, 2000

View PDFchevron_right

The arbitrary order mixed mimetic finite difference method for the diffusion equation

Vitaliy Gyrya

ESAIM: Mathematical Modelling and Numerical Analysis, 2016

View PDFchevron_right

A posteriori estimates of the solution error caused by discretization in the finite element, finite difference and boundary element methods

J. Reizes

International Journal for Numerical Methods in Engineering, 1987

View PDFchevron_right

Discontinuous Galerkin timestepping for nonlinear parabolic problems

Mohammad Sabawi

2018

View PDFchevron_right

Superconvergence of the mixed finite element approximations of parabolic problems using rectangular finite elements

Raytcho Lazarov

1993

View PDFchevron_right

A priori error estimates of expanded mixed FEM for Kirchhoff type parabolic equation

Morrakot Khebchareon

Numerical Algorithms, 2019

View PDFchevron_right

Error estimates for finite volume element methods for convection–diffusion–reaction equations

Juergen Geiser

Applied Numerical Mathematics, 2007

View PDFchevron_right

A Unified Approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume Methods

Thierry Gallouët

Mathematical Models and Methods in Applied Sciences, 2010

View PDFchevron_right

Error Indicators for the Mortar Finite Element Discretization of a Parabolic Problem

Zoubida Mghazli

Numerical Algorithms, 2003

View PDFchevron_right

Weak Galerkin finite element method with second-order accuracy in time for parabolic problems

Fuzheng Gao

Applied Mathematics Letters, 2018

View PDFchevron_right

An assessment of discretizations for convection-dominated convection–diffusion equations

Rudolf Umla

Computer Methods in Applied Mechanics and Engineering, 2011

View PDFchevron_right

Discontinuous Galerkin Time Discretization Methods for Parabolic Problems with Linear Constraints

Arnold Reusken

arXiv (Cornell University), 2018

View PDFchevron_right

Error Estimate of the DGFEM for Nonlinear Convection-Diffusion Problems

Shaimaa kadhum

2012

View PDFchevron_right

A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time

Rolf Rannacher

2011

View PDFchevron_right

A posteriori error estimates for combined finite volume–finite element discretizations of reactive transport equations on nonmatching grids

Danielle Hilhorst

Computer Methods in Applied Mechanics and Engineering, 2011

View PDFchevron_right