Targeted assembly and synchronization of self-spinning microgears (original) (raw)

Dynamic self-organization of side-propelling colloidal rods: experiments and simulations

Soft Matter, 2016

In recent years, there is a growing interest in designing artificial analogues of living systems, fueled not only by potential applications as 'smart micro-machines', but also by the demand for simple models that can be used to study the behavior of their more complex natural counterparts. Here, we present a facile, internally driven, experimental system comprised of fluorescently labeled colloidal silica rods of which the selfpropulsion is powered by the decomposition of H 2 O 2 catalyzed by a lengthwise half Pt coating of the particles in order to study how shape anisotropy and swimming direction affect the collective behavior. We investigated the emerging structures and their time evolution for various particle concentrations in (quasi-)two dimensional systems for three aspect ratios of the rods on a single particle level using a combination of experiments and simulations. We found that the dynamic self-organization relied on a competition between self-propulsion and phoretic attractions induced by phoresis of the rods. We observed that the particle clustering behavior depends on the concentration as well as the aspect ratio of the rods. Our findings provide a more detailed understanding of dynamic self-organization of anisotropic particles and the role the propulsion direction plays in internally driven systems.

Rich complex behaviour of self-assembled nanoparticles far from equilibrium

Nature communications, 2017

A profoundly fundamental question at the interface between physics and biology remains open: what are the minimum requirements for emergence of complex behaviour from nonliving systems? Here, we address this question and report complex behaviour of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: the system is driven far from equilibrium by ultrafast laser pulses that create spatiotemporal temperature gradients, inducing Marangoni flow that drags particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between flow, aggregate and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behaviour, analogous to those seen in living organisms, emerges, whereby aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggreg...

Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella

Scientific Reports

The quest for designing new self-propelled colloids is fuelled by the demand for simple experimental models to study the collective behaviour of their more complex natural counterparts. Most synthetic self-propelled particles move by converting the input energy into translational motion. In this work we address the question if simple self-propelled spheres can assemble into more complex structures that exhibit rotational motion, possibly coupled with translational motion as in flagella. We exploit a combination of induced dipolar interactions and a bonding step to create permanent linear bead chains, composed of self-propelled Janus spheres, with a well-controlled internal structure. Next, we study how flexibility between individual swimmers in a chain can affect its swimming behaviour. Permanent rigid chains showed only active rotational or spinning motion, whereas longer semi-flexible chains showed both translational and rotational motion resembling flagella like-motion, in the presence of the fuel. Moreover, we are able to reproduce our experimental results using numerical calculations with a minimal model, which includes full hydrodynamic interactions with the fluid. Our method is general and opens a new way to design novel self-propelled colloids with complex swimming behaviours, using different complex starting building blocks in combination with the flexibility between them.

Light-powered autonomous and directional molecular motion of a dissipative self-assembling system

Nature nanotechnology, 2015

Biomolecular motors convert energy into directed motion and operate away from thermal equilibrium. The development of dynamic chemical systems that exploit dissipative (non-equilibrium) processes is a challenge in supramolecular chemistry and a premise for the realization of artificial nanoscale motors. Here, we report the relative unidirectional transit of a non-symmetric molecular axle through a macrocycle powered solely by light. The molecular machine rectifies Brownian fluctuations by energy and information ratchet mechanisms and can repeat its working cycle under photostationary conditions. The system epitomizes the conceptual and practical elements forming the basis of autonomous light-powered directed motion with a minimalist molecular design.

Active structuring of colloids through field-driven self-assembly

Current Opinion in Colloid & Interface Science, 2019

In recent years self-assembly has become progressively more "active", i.e. the focus of research gradually has shifted towards field-manipulation of matter in order to form temporary states rather than creating static architectures. The desire for timeprogrammed control of materials certainly originates from the unmatched complexity of natural systems that orchestrate multiple components across length scales. Although artificial selfassembly still lacks control comparable to natural systems, there has been impressive progress in a concerted approach from physicists, chemists, biologists, and engineers. This review summarizes the current trend in colloidal assembly advancing from static assembly of isotropic particles towards active structuring of anisotropic particles with heterogeneous (patchy) surfaces, and ultimately, to complex behavior in dissipative dynamic systems. We focus both on the formation of static structures and on temporary states due to response to magnetic, electric, or optic stimulation. We give examples of nano-and microparticle assembly where the temporary state may adopt equilibrium order or a continuously changing dynamic pattern.

Self-assembly of active colloidal molecules with dynamic function

Physical Review E, 2015

Catalytically active colloids maintain non-equilibrium conditions in which they produce and deplete chemicals and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity decay as 1/r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a non-equilibrium analogue of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions when they join up to form molecules via generalized ionic bonds, and discuss how we can achieve structures with time dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern of conformations, and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing selfassembled structures that posses dynamical functionalities that are determined by their prescribed 3D structures, a strategy that follows the design principle of proteins.

Tuning the motility and directionality of self-propelled colloids

Scientific reports, 2017

Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Although experimentally the speed of active particles can be controlled by e.g. self-generated chemical and thermal gradients, an in-situ change of swimming direction remains a challenge. In this work, we study self-propulsion of half-coated spherical colloids in critical binary mixtures and show that the coupling of local body forces, induced by laser illumination, and the wetting properties of the colloid, can be used to finely tune both the colloid's swimming speed and its directionality. We experimentally and numerically demonstrate that the direction of motion can be reversibly switched by means of the size and shape of the droplet(s) nucleated around the colloid, depending on the part...