Technical challenges in tackling regulatory concerns for urban atmospheric nanoparticles (original) (raw)

A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls

Atmospheric Environment, 2010

The likely health and environmental implications associated with atmospheric 9 nanoparticles have prompted considerable recent research activity. Knowledge of the 10 characteristics of these particles has improved considerably due to an ever growing interest in 11 the scientific community, though not yet sufficient to enable regulatory decision making on a 12 particle number basis. This review synthesizes the existing knowledge of nanoparticles in the 13 urban atmosphere, highlights recent advances in our understanding and discusses research 14 priorities and emerging aspects of the subject. The article begins by describing the 15 characteristics of the particles and in doing so treats their formation, chemical composition 16 and number concentrations, as well as the role of removal mechanisms of various kinds. This 17 is followed by an overview of emerging classes of nanoparticles (i.e. manufactured and bio-18 fuel derived), together with a brief discussion of other sources. The subsequent section 19 provides a comprehensive review of the working principles, capabilities and limitations of the 20 main classes of advanced instrumentation that are currently deployed to measure number and 21 size distributions of nanoparticles in the atmosphere. A further section focuses on the 22 dispersion modelling of nanoparticles and associated challenges. Recent toxicological and 23 epidemiological studies are reviewed so as to highlight both current trends and the research 24 needs relating to exposure to particles and the associated health implications. The review then 25 addresses regulatory concerns by providing an historical perspective of recent developments 26 together with the associated challenges involved in the control of airborne nanoparticle 27

Nanoparticle emissions from 11 non-vehicle exhaust sources – A review

Atmospheric Environment, 2013

Nanoparticle emissions from road vehicles have been studied extensively in the recent past due to their dominant contribution towards the total airborne particle number concentrations (PNCs) found in the urban atmospheric environment. In view of upcoming tighter vehicle emission standards and adoption of cleaner fuels in many parts of the world, the contribution to urban nanoparticles from non-vehicle exhaust sources (NES) may become more pronounced in future. As of now, only limited information exists on nanoparticle emissions from NES through the discretely published studies. This article presents critically synthesised information in a consolidated manner on 11 NES (i.e. roadtyre interaction, construction and demolition, aircraft, ships, municipal waste incineration, power plants, domestic biomass burning, forest fires, cigarette smoking, cooking, and secondary formation). Source characteristics and formation mechanisms of nanoparticles emitted from each NES are firstly discussed, followed by their emission strengths, airborne concentrations and physicochemical characteristics. Direct comparisons of the strengths of NES are not straightforward but an attempt has been made to discuss their importance relative to the most prominent source (i.e. road vehicles) of urban nanoparticles. Some interesting comparisons emerged such as 1 kg of fast and slow wood burning produces nearly the same number of particles as for each km driven by a heavy duty vehicle (HDV) and a light duty vehicle, respectively. About 1 minutes of cooking on gas can produce the similar particle numbers generated by ~10 minutes of cigarette smoking or 1 m travel by a HDV. Apportioning the contribution of numerous sources from the bulk measured airborne PNCs is essential for determining their relative importance. Receptor modelling methods for estimation of source emission contributions are discussed. A further section evaluates the likely exposure risks, health and regulatory implications associated with each NES. It is concluded that much research is needed to provide adequate quantification of all nanoparticle sources, and to establish the relative toxicity of nanosize particles from each.

Contribution of traffic-originated nanoparticle emissions to regional and local aerosol levels

2021

Sub-50 nm particles originating from traffic emissions pose risks to human health due to their high lung deposition efficiency and potentially harmful chemical composition. We present a modeling study using an updated European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) number emission inventory, incorporating a more realistic, empirically justified particle size distribution (PSD) for sub-50 nm particles from road traffic as compared with the previous version. We present experimental PSDs and CO 2 concentrations, measured in a highly trafficked street canyon in Helsinki, Finland, as an emission factor particle size distribution (EFPSD), which was then used in updating the EUCAARI inventory. We applied the updated inventory in a simulation using the regional chemical transport model PMCAMx-UF over Europe for May 2008. This was done to test the effect of updated emissions at regional and local scales, particularly in comparison with atmospheric new particle formation (NPF). Updating the inventory increased the simulated average total particle number concentrations by only 1 %, although the total particle number emissions were increased to a 3-fold level. The concentrations increased up to 11 % when only 1.3-3 nm sized particles (nanocluster aerosol, NCA) were considered. These values indicate that the effect of updating overall is insignificant at a regional scale during this photochemically active period. During this period, the fraction of the total particle number originating from atmospheric NPF processes was 91 %; thus, these simulations give a lower limit for the contribution of traffic to the aerosol levels. Nevertheless, the situation is different when examining the effect of the update closer spatially or temporally or when focusing on the chemical composition or the origin of the particles. For example, the daily average NCA concentrations increased by a factor of several hundred or thousand in some locations on certain days. Overall, the most significant effects-reaching several orders of magnitude-from updating the inventory are observed when examining specific particle sizes (especially 7-20 nm), particle components, and specific urban areas. While the model still has a tendency to predict more sub-50 nm particles compared to the observations, the most notable underestimations in the concentrations of sub-10 nm particles are now overcome. Additionally, the simulated distributions now agree better with the data observed at locations with high traffic densities. The findings of this study highlight the need to consider emissions, PSDs, and composition of sub-50 nm particles from road traffic in studies focusing on urban air quality. Updating this emission source brings the simulated aerosol levels, particularly in urban locations, closer to observations, which highlights its importance for calculations of human exposure to nanoparticles.

Sources and concentration of nanoparticles (< 10 nm diameter) in the urban atmosphere

Atmospheric Environment, 2001

Whilst limited information on particle size distributions and number concentrations in cities is available, very few data on the very smallest of particles, nanoparticles, have been recorded. Measurements in this study show that road tra$c and stationary combustion sources generate a signi"cant number of nanoparticles of diameter (10 nm. Measurements at the roadside (4 m from the kerb) and downwind from the tra$c (more than 25 m from the kerb) show that nanoparticles ( (10 nm diameter) accounted for more than 36}44% of the total particle number concentrations. Measurements designed to sample the plume of individual vehicles showed that both a diesel-and a petrol-fuelled vehicle generated nanoparticles ( (10 nm diameter). The fraction of nanoparticles was even greater in a plume 350 m downwind of a stationary combustion source. On a few occasions, a temporal association between nanoparticles in the size range 3}7 nm and solar radiation was observed in urban background air at times when no other local sources were in#uential, which suggests that homogeneous nucleation can also be an important source of particles in the urban atmosphere.

Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities

Journal of Nanoparticle Research, 2010

Currently, there are no air quality regulations in force in any part of the world to control number concentrations of airborne atmospheric nanoparticles (ANPs). This is partly due to a lack of reliable information on measurement methods, dispersion characteristics, modelling, health and other environmental impacts. Because of the special characteristics of manufactured (also termed engineered or synthesised) nanomaterials or nanoparticles (MNPs), a substantial increase is forecast for their manufacture and use, despite understanding of safe design and use, and health and environmental implications being in its early stage. This article discusses a number of underlining technical issues by comparing the properties and behaviour of MNPs with anthropogenically produced ANPs. Such a comparison is essential for the judicious treatment of the MNPs in any potential air quality regulatory framework for ANPs.

Preliminary Estimates of Nanoparticle Number Emissions from Road Vehicles in Megacity Delhi and Associated Health Impacts

Rapid urbanisation in developing megacities like Delhi has resulted in an increased number of road vehicles and hence total particle number (ToN) emissions. For the first time, this study presents preliminary estimates of ToN emissions from road vehicles, roadside and ambient ToN concentrations, and exposure related excess deaths in Delhi in current and two future scenarios; business as usual (BAU) and best estimate scenario (BES). Annual ToN emissions are estimated as 1.37 Â 10 25 for 2010 which are expected to increase by ∼4 times in 2030-BAU, but to decrease by ∼18 times in 2030-BES. Such reduction is anticipated due to a larger number of compressed natural gas driven vehicles and assumed retrofitting of diesel particulate filters to all diesel vehicles by 2020. Heavy duty vehicles emit the majority (∼65%) of ToN for only ∼4% of total vehicle kilometres traveled in 2010. Their contribution remains dominant under both scenarios in 2030, clearly requiring major mitigation efforts. Roadside and ambient ToN concentrations were up to a factor of 30 and 3 higher to those found in respective European environments. Exposure to ambient ToN concentrations resulted in ∼508, 1888, and 31 deaths per million people in 2010, 2030-BAU and 2030-BES, respectively.

Oxidative Stress Produced by Urban Atmospheric Nanoparticles

Nanomaterials - Toxicity, Human Health and Environment [Working Title], 2019

In urban areas, the diesel-fuelled and bio-fuelled vehicles represent the major sources of nanoparticles complemented by nanotechnology with different types of particles, in addition to natural and to other anthropogenic sources. The atmospheric nanoparticles differ in composition, size, shape or oxidant capacity, presenting a large variability that causes difficulties in their measurements and health impact identification. The oxidative stress can be initiated by atmospheric nanoparticles through different mechanisms: interaction between nanoparticles and tissue cells, cellular internalisation of nanoparticles, activation of signalling pathways, decrease of the cellular antioxidants, activation of the pro-inflammatory cascade, lipid peroxidation, activation of cellular signalling pathway that leads to apoptosis, etc. Ultrafine particles (<100 nm) represent ~80% of the total atmospheric particles and produce inflammation through oxidative stress mechanisms. The atmospheric nanoparticles can penetrate the skin and can be inhaled or ingested affecting different organs and leading to different diseases: neurodegeneration, thrombogenesis, atherosclerosis, asthma, lung cancer, heart arrest, etc.