Comparison of kinetic models for dual-tracer receptor concentration imaging in tumors (original) (raw)

Advantages of a dual-tracer model over reference tissue models for binding potential measurement in tumors

Physics in Medicine and Biology, 2012

The quantification of tumor molecular expression in vivo could have a significant impact for informing and monitoring emerging targeted therapies in oncology. Molecular imaging of targeted tracers can be used to quantify receptor expression in the form of a binding potential (BP) if the arterial input curve or a surrogate of it is also measured. However, the assumptions of the most common approaches (reference tissue models) may not be valid for use in tumors. In this study, the validity of reference tissue models is investigated for use in tumors experimentally and in simulations. Three different tumor lines were grown subcutaneously in athymic mice and the mice were injected with a mixture of an epidermal growth factor receptor-targeted fluorescent tracer and an untargeted fluorescent tracer. A one-compartment plasma input model demonstrated that the transport kinetics of both tracers was significantly different between tumors and all potential reference tissues, and using the reference tissue model resulted in a theoretical underestimation in BP of 50% ± 37%. On the other hand, the targeted and untargeted tracers demonstrated similar transport kinetics, allowing a dual-tracer approach to be employed to accurately estimate BP (with a theoretical error of 0.23% ± 9.07%). These findings highlight the potential for using a dual-tracer approach to quantify receptor expression in tumors with abnormal hemodynamics, possibly to inform the choice or progress of molecular cancer therapies.

Accounting for pharmacokinetic differences in dual-tracer receptor density imaging

Physics in Medicine and Biology, 2014

Dual-tracer molecular imaging is a powerful approach to quantify receptor expression in a wide range of tissues by using an untargeted tracer to account for any nonspecific uptake of a molecular-targeted tracer. This approach has previously required the pharmacokinetics of the receptor-targeted and untargeted tracers to be identical, requiring careful selection of an ideal untargeted tracer for any given targeted tracer. In this study, methodology capable of correcting for tracer differences in arterial input functions, as well as binding-independent delivery and retention, is derived and evaluated in a mouse U251 glioma xenograft model using an Affibody tracer targeted to epidermal growth factor receptor (EGFR), a cell membrane receptor overexpressed in many cancers. Simulations demonstrated that blood, and to a lesser extent vascular-permeability, pharmacokinetic differences between targeted and untargeted tracers could be quantified by deconvolving the uptakes of the two tracers in a region of interest devoid of targeted tracer binding, and therefore corrected for, by convolving the uptake of the untargeted tracer in all regions of interest by the product of the deconvolution. Using fluorescently labeled, EGFR-targeted and untargeted Affibodies (known to have different blood clearance rates), the average tumor concentration of EGFR in four mice was estimated using dual-tracer kinetic modeling to be 3.9 ± 2.4 nM compared to an expected concentration of 2.0 ± 0.4 nM. However, with deconvolution Phys. Med. Biol. 59 (2014) 2341 K M Tichauer et al correction a more equivalent EGFR concentration of 2.0 ± 0.4 nM was measured.

Generalized paired-agent kinetic model forin vivoquantification of cancer cell-surface receptors under receptor saturation conditions

Physics in Medicine and Biology, 2016

New precision medicine drugs oftentimes act through binding to specific cell-surface cancer receptors, and thus their efficacy is highly dependent on the availability of those receptors and the receptor concentration per cell. Paired-agent molecular imaging can provide quantitative information on receptor status in vivo, especially in tumor tissue; however, to date, published approaches to paired-agent quantitative imaging require that only "trace" levels of imaging agent exist compared to receptor concentration. This strict requirement may limit applicability, particularly in drug binding studies, which seek to report on a biological effect in response to saturating receptors with a drug moiety. To extend the regime over which paired-agent imaging may be used, this work presents a generalized simplified reference tissue model (GSRTM) for paired-agent imaging developed to approximate receptor concentration in both non-receptorsaturated and receptor-saturated conditions. Extensive simulation studies show that tumor receptor concentration estimates recovered using the GSRTM are more accurate in receptor-saturation conditions than the standard simple reference tissue model (SRTM) (% error (mean ± sd): GSRTM 0 ± 1 and SRTM 50 ± 1) and match the SRTM accuracy in non-saturated conditions (% error (mean ± sd): GSRTM 5 ± 5 and SRTM 0 ± 5). To further test the approach, GSRTM-estimated receptor concentration was compared to SRTM-estimated values extracted from tumor xenograft in vivo mouse model data. The GSRTM estimates were observed to deviate from the SRTM in tumors with low receptor saturation (which are likely in a saturated regime). Finally, a general "rule-of-thumb" algorithm is presented to estimate the expected level of receptor saturation that would be achieved in a given tissue provided dose and pharmacokinetic information about the drug or imaging agent being used, and physiological information about the tissue. These studies suggest that the GSRTM is necessary when receptor saturation exceeds 20% and highlight the potential for GSRTM to accurately measure receptor concentrations under saturation conditions, such as might be required during high dose drug studies, or for imaging applications where high concentrations of imaging agent are required to optimize signal-to-noise conditions. This model can also be applied to PET and SPECT imaging studies that tend to suffer from noisier data, but require one less parameter to fit if images are converted to imaging agent concentration (quantitative PET/SPECT).

Multichannel Imaging to Quantify Four Classes of Pharmacokinetic Distribution in Tumors

2014

Low and heterogeneous delivery of drugs and imaging agents to tumors results in decreased efficacy and poor imaging results. Systemic delivery involves a complex interplay of drug properties and physiological factors, and heterogeneity in the tumor microenvironment makes predicting and overcoming these limitations exceptionally difficult. Theoretical models have indicated that there are four different classes of pharmacokinetic behavior in tissue, depending on the fundamental steps in distribution. In order to study these limiting behaviors, we used multichannel fluorescence microscopy and stitching of high-resolution images to examine the distribution of four agents in the same tumor microenvironment. A validated generic partial differential equation model with a graphical user interface was used to select fluorescent agents exhibiting these four classes of behavior, and the imaging results agreed with predictions. BODIPY-FL exhibited higher concentrations in tissue with high blood flow, cetuximab gave perivascular distribution limited by permeability, high plasma protein and target binding resulted in diffusion-limited distribution for Hoechst 33342, and Integrisense 680 was limited by the number of binding sites in the tissue. Together, the probes and simulations can be used to investigate distribution in other tumor models, predict tumor drug distribution profiles, and design and interpret in vivo experiments. C 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci Keywords: drug transport; imaging methods; in vivo/in vitro correlations (IVIVC); mathematical model; Krogh cylinder; fluorescence microscopy; predictive partial differential equation simulations

Comparison of Two Compartmental Models for Describing Receptor Ligand Kinetics and Receptor Availability in Multiple Injection PET Studies

Journal of Cerebral Blood Flow & Metabolism, 1996

The goal of research with receptor ligands and PET is the characterization of an in vivo system that mea sures rates of association and dissociation of a Iigand receptor complex and the density of available binding sites. It has been suggested that multiple injection studies of radioactive ligand are more likely to identify model parameters than are single injection studies. Typically, at least one of the late injections is at a low specific activity (SA), so that part of the positron emission tomography (PET) curve reflects ligand dissociation . Low SA injec tions and the attendant reductions in receptor availabil ity, however, may violate tracer kinetic assumptions, namely, tracer may no longer be in steady state with the total (labeled and unlabeled) ligand . Tissue response be comes critically dependent on the dose of total ligand, and an accurate description of the cold ligand in the tissue is needed to properly model the system. Two alternative models have been applied to the receptor modeling prob lem, which reduces to describing the time-varying num ber of available receptor sites. The first (Huang et aI .,

Correcting for targeted and control agent signal differences in paired-agent molecular imaging of cancer cell-surface receptors

Journal of biomedical optics, 2018

Paired-agent kinetic modeling protocols provide one means of estimating cancer cell-surface receptors with in vivo molecular imaging. The protocols employ the coadministration of a control imaging agent with one or more targeted imaging agent to account for the nonspecific uptake and retention of the targeted agent. These methods require the targeted and control agent data be converted to equivalent units of concentration, typically requiring specialized equipment and calibration, and/or complex algorithms that raise the barrier to adoption. This work evaluates a kinetic model capable of correcting for targeted and control agent signal differences. This approach was compared with an existing simplified paired-agent model (SPAM), and modified SPAM that accounts for signal differences by early time point normalization of targeted and control signals (SPAMPN). The scaling factor model (SPAMSF) outperformed both SPAM and SPAMPN in terms of accuracy and precision when the scale differenc...

MRI-Based Computational Model of Heterogeneous Tracer Transport following Local Infusion into a Mouse Hind Limb Tumor

PLoS ONE, 2014

Systemic drug delivery to solid tumors involving macromolecular therapeutic agents is challenging for many reasons. Amongst them is their chaotic microvasculature which often leads to inadequate and uneven uptake of the drug. Localized drug delivery can circumvent such obstacles and convection-enhanced delivery (CED) -controlled infusion of the drug directly into the tissue -has emerged as a promising delivery method for distributing macromolecules over larger tissue volumes. In this study, a three-dimensional MR image-based computational porous media transport model accounting for realistic anatomical geometry and tumor leakiness was developed for predicting the interstitial flow field and distribution of albumin tracer following CED into the hind-limb tumor (KHT sarcoma) in a mouse. Sensitivity of the model to changes in infusion flow rate, catheter placement and tissue hydraulic conductivity were investigated. The model predictions suggest that 1) tracer distribution is asymmetric due to heterogeneous porosity; 2) tracer distribution volume varies linearly with infusion volume within the whole leg, and exponentially within the tumor reaching a maximum steady-state value; 3) infusion at the center of the tumor with high flow rates leads to maximum tracer coverage in the tumor with minimal leakage outside; and 4) increasing the tissue hydraulic conductivity lowers the tumor interstitial fluid pressure and decreases the tracer distribution volume within the whole leg and tumor. The model thus predicts that the interstitial fluid flow and drug transport is sensitive to porosity and changes in extracellular space. This image-based model thus serves as a potential tool for exploring the effects of transport heterogeneity in tumors. Citation: Magdoom KN, Pishko GL, Rice L, Pampo C, Siemann DW, et al. (2014) MRI-Based Computational Model of Heterogeneous Tracer Transport following Local Infusion into a Mouse Hind Limb Tumor. PLoS ONE 9(3): e89594.

Population Pharmacokinetics of Tracers: A New Tool for Medical Imaging?

Clinical Pharmacokinectics, 2016

Positron emission tomography-computed tomography is a medical imaging method measuring the activity of a radiotracer chosen to accumulate in cancer cells. A recent trend of medical imaging analysis is to account for the radiotracer's pharmacokinetic properties at a voxel (three-dimensional-pixel) level to separate the different tissues. These analyses are closely linked to population pharmacokinetic-pharmacodynamic modelling. Kineticists possess the cultural background to improve medical imaging analysis. This article stresses the common points with population pharmacokinetics and highlights the methodological locks that need to be lifted.