Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians (original) (raw)

Computed tomographies and cancer risk in children: a literature overview of CT practices, risk estimations and an epidemiologic cohort study proposal

Biophysik

Radiation protection is a topic of great public concern and of many scientific investigations, because ionizing radiation is an established risk factor for leukaemia and many solid tumours. Exposure of the public to ionizing radiation includes exposure to background radiation, as well as medical and occupational exposures. A large fraction of the exposure from diagnostic procedures comes from medical imaging. Computed tomography (CT) is the major single contributor of diagnostic radiation exposure. An increase in the use of CTs has been reported over the last decades in many countries. Children have smaller bodies and lower shielding capacities, factors that affect the individual organ doses due to medical imaging. Several risk models have been applied to estimate the cancer burden caused by ionizing radiation from CT. All models predict higher risks for cancer among children exposed to CT as compared to adults. However, the cancer risk associated with CT has not been assessed direc...

Radiation epidemiology and recent paediatric computed tomography studies

Annals of the ICRP, 2015

Recent record-linkage studies of cancer risk following computed tomography (CT) procedures among children and adolescents under 21 years of age must be interpreted with caution. The reasons why the examinations were performed were not known, and the dosimetric approaches did not include individual dose reconstructions or account for the possibility for missed examinations. The recent report (2013) on children by the United Nations Scientific Committee on the Effects of Atomic Radiation concluded that the associations may have resulted from confounding by indication (also called ‘reverse causation’), and not radiation exposure. The reported cancer associations may very well have been related to the patients’ underlying health conditions that prompted the examinations. Reverse causation has been observed in other epidemiological investigations, such as a Swedish study of thyroid cancer risk following I-131 scintillation imaging scans, and in studies of brain cancer risk following Thor...

Computed tomography in children: multicenter cohort study design for the evaluation of cancer risk

European Journal of Epidemiology

Exposure to ionizing radiation is a known risk factor for cancer. Cancer risk is highest after exposure in childhood. The computed tomography is the major contributor to the average, individual radiation exposure. Until now the association has been addressed only in statistical modeling. We present the first feasible study design on childhood cancer risk after exposure to computed tomography.

EPI-CT: design, challenges and epidemiological methods of an international study on cancer risk after paediatric and young adult CT

Journal of Radiological Protection, 2015

Computed tomography (CT) has great clinical utility and its usage has increased dramatically over the years. Concerns have been raised, however, about health impacts of ionising radiation exposure from CTs, particularly in children, who have a higher risk for some radiation induced diseases. Direct estimation of the health impact of these exposures is needed, but the conduct of epidemiological studies of paediatric CT populations poses a number of challenges which, if not addressed, could invalidate the results. The aim of the present paper is to review the main challenges of a study on the health impact of paediatric CTs and how the protocol of the European collaborative study EPI-CT, coordinated by the International Agency for Research on Cancer (IARC), is designed to address them. The study, based on a common protocol, is being conducted in Belgium,

Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults

Nature Medicine

Over one million European children undergo computed tomography (CT) scans annually. Although moderate- to high-dose ionizing radiation exposure is an established risk factor for hematological malignancies, risks at CT examination dose levels remain uncertain. Here we followed up a multinational cohort (EPI-CT) of 948,174 individuals who underwent CT examinations before age 22 years in nine European countries. Radiation doses to the active bone marrow were estimated on the basis of body part scanned, patient characteristics, time period and inferred CT technical parameters. We found an association between cumulative dose and risk of all hematological malignancies, with an excess relative risk of 1.96 (95% confidence interval 1.10 to 3.12) per 100 mGy (790 cases). Similar estimates were obtained for lymphoid and myeloid malignancies. Results suggest that for every 10,000 children examined today (mean dose 8 mGy), 1–2 persons are expected to develop a hematological malignancy attributa...

The communication of the radiation risk from CT in relation to its clinical benefit in the era of personalized medicine Part 1: the radiation risk from CT

The theory of radiation carcinogenesis has been debated for decades. Most estimates of the radiation risks from CT have been based on extrapolations from the lifespan follow-up study of atomic bomb survivors and on follow-up studies after therapeutic radiation, using the linear no-threshold theory. Based on this, many population-based projections of induction of future cancers by CT have been published that should not be used to estimate the risk to an individual because of their large margin of error. This has changed recently with the publication of three large international cohort follow-up studies, which link observed cancers to CT scans received in childhood. A fourth ongoing multi-country study in Europe is expected to have enough statistical power to address the limitations of the prior studies. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) report released in 2013 specifically addresses variability in response of the pediatric population exposed to ionizing radiation. Most authorities now conclude that there is enough evidence to link future cancers to the radiation exposure from a single CT scan in childhood but that cancer risk estimates for individuals must be based on the specifics of exposure, age at exposure and absorbed dose to certain tissues. Generalizations are not appropriate, and the communication of the CT risk to individuals should be conducted within the framework of personalized medicine.

Projected cancer risks potentially related to past, current, and future practices in paediatric CT in the United Kingdom, 1990-2020

British journal of cancer, 2017

To project risks of developing cancer and the number of cases potentially induced by past, current, and future computed tomography (CT) scans performed in the United Kingdom in individuals aged <20 years. Organ doses were estimated from surveys of individual scan parameters and CT protocols used in the United Kingdom. Frequencies of scans were estimated from the NHS Diagnostic Imaging Dataset. Excess lifetime risks (ELRs) of radiation-related cancer were calculated as cumulative lifetime risks, accounting for survival probabilities, using the RadRAT risk assessment tool. In 2000-2008, ELRs ranged from 0.3 to 1 per 1000 head scans and 1 to 5 per 1000 non-head scans. ELRs per scan were reduced by 50-70% in 2000-2008 compared with 1990-1995, subsequent to dose reduction over time. The 130 750 scans performed in 2015 in the United Kingdom were projected to induce 64 (90% uncertainty interval (UI): 38-113) future cancers. Current practices would lead to about 300 (90% UI: 230-680) fut...